Advertisement

Self-organization Promotes the Evolution of Cooperation with Cultural Propagation

  • Luis Enrique Cortés-Berrueco
  • Carlos Gershenson
  • Christopher R. Stephens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8221)

Abstract

In this paper three computational models for the study of the evolution of cooperation under cultural propagation are studied: Kin Selection, Direct Reciprocity and Indirect Reciprocity. Two analyzes are reported, one comparing their behavior between them and a second one identifying the impact that different parameters have in the model dynamics. The results of these analyzes illustrate how game transitions may occur depending of some parameters within the models and also explain how agents adapt to these transitions by individually choosing their attachment to a cooperative attitude. These parameters regulate how cooperation can self-organize under different circumstances. The emergence of the evolution of cooperation as a result of the agent’s adapting processes is also discussed.

Keywords

Public Good Game Evolutionary Stable Strategy Cultural Propagation Indirect Reciprocity Traffic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science, New Series 211(4489), 1390–1396 (1981)MATHMathSciNetGoogle Scholar
  2. 2.
    Nagatani, T.: Chaos and dynamical transition of a single vehicle induced by traffic light and speedup. Physica A 348, 561–571 (2005)CrossRefGoogle Scholar
  3. 3.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique 1 2(12), 2221–2229 (1992)CrossRefGoogle Scholar
  4. 4.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)CrossRefGoogle Scholar
  5. 5.
    Nowak, M.A.: Five rules for the evolution of cooperation supporting online material. Science, http://www.sciencemag.org/content/314/5805/1560/suppl/DC1
  6. 6.
    Santos, F.C., Pacheco, J.M., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103(9), 3490–3494 (2006)CrossRefGoogle Scholar
  7. 7.
    Santos, F.C., Santos, M.D., Pacheco, J.M.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454, 213–216 (2008)CrossRefGoogle Scholar
  8. 8.
    Skyrm, B.: The dynamics of rational deliberation. Hardvard University Press, Cambridge (1990)Google Scholar
  9. 9.
    Skyrms, B.: Dynamic models of deliberation and the theory of games. In: Proceeding of the 3rd Conference of Theoretical Aspects of Reasoning about Knowledge, pp. 185–200 (1990)Google Scholar
  10. 10.
    Wastavino, L.A., Toledo, B.A., Rogan, J., Zarama, R., Muñoz, V., Valdivia, J.A.: Modeling traffic on crossroads. Physica A 381, 411–419 (2007)CrossRefGoogle Scholar
  11. 11.
    Weirich, P.: Computer simulations in game theory (2006), http://philsci-archive.pitt.edu/2754/
  12. 12.
    Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo/
  13. 13.
    arXiv:1302.6533 [cs.GT]Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Luis Enrique Cortés-Berrueco
    • 1
  • Carlos Gershenson
    • 2
    • 4
  • Christopher R. Stephens
    • 3
    • 4
  1. 1.Graduate Program in Computer Science and EngineeringUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Computer Science Department, Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  3. 3.Gravitation Department. Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  4. 4.Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMéxico

Personalised recommendations