Skip to main content

The Role of Arabinogalactan Proteins in Morphogenesis of Centaurium erythraea Rafn In Vitro

  • Chapter
  • First Online:
The Gentianaceae - Volume 2: Biotechnology and Applications

Abstract

Histochemical localization using the β-Glc Yariv reagent and immunolocalization with arabinogalactan protein (AGP) reactive antibodies (LM2, JIM13, JIM15, JIM16, MAC207) were performed during morphogenic induction in root cultures of Centaurium erythraea Rafn cultured on half-strength MS medium without plant growth regulators. The observations revealed that β-Glc Yariv reagent specifically bound to AGPs in cells of the root epidermis and central cylinder. Monoclonal antibodies recognizing AGPs were localized in epidermal cells and cells of the central cylinder (LM2 , JIM16), vascular tissue (JIM15), globular somatic embryos (LM2, MAC207), and de novo-formed meristematic centers in the root cortex (JIM16). The effect of β-Glc Yariv reagent was investigated after supplementation (0–75 μM) in the culture medium. The morphogenetic potential was increased at lower concentrations (15–25 μM) of treatment with β-Glc Yariv reagent but inhibited (40 %) at the highest concentration. These results implicate that AGPs play a significant role during the development of somatic embryos and adventitious shoots in root cultures of C. erythraea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberham A, Pieri V, Croom EM Jr, Ellmerer E, Stuppner H (2011) Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis, Gentiana lutea using LC-MS and RP-HPLC. J Pharm Biomed Anal 54:517–525

    CAS  PubMed  Google Scholar 

  • Adème-Onzighi C, Sivaguru M, Judy-March J, Baskin TI, Driouich A (2002) The reb1-1 mutation alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical micritubules. Planta 215:949–958

    Google Scholar 

  • Baldwin TC, van-Hengel AJ, Roberts K (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension–cultured cells of Daucus carota. Purifiction and partial characterization. Plant Physiol 103:115–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barešová H, Herben T (1985) Changes in sensitivity of the leaf segments of Centaurium erythraea during their regeneration. In: International symposium of regulation of plant integrity, Brno, ČSSR, Book of abstracts, p 35

    Google Scholar 

  • Barešová H, Herben T, Kaminek M, Krekule J (1985) Hormonal control of morphogenesis in leaf segments of Centaurium erythraea. Biol Plant 27:286–291

    Google Scholar 

  • Barešová H, Kaminek M (1984) Light induce embryogenesis in suspension culture of Centaurium erythraea Rafn. In: Novák FJ, Havel L, Doležel J (eds) Plant tissue and cell culture propagation to crop improvement. Czech Academy of Sciences, Prague, pp 163–164

    Google Scholar 

  • Beerhues L, Berger U (1994) Xanthones in cell suspension cultures of two Centaurium species. Phytochem 35:1227–1231

    CAS  Google Scholar 

  • Ben Amar A, Cobanov P, Ghorbel A, Mliki A, Reustle GM (2010) Involvement of arabinogalactan proteins in the control of cell proliferation of Cucurbita pepo suspension cultures. Biol Plant 54:321–324

    CAS  Google Scholar 

  • Bhattacharya SK, Reddy PKSP, Ghosal S, Singh AK, Sharma PV (1976) Chemical constituents of Gentianaceae XIX: CNS depressant effect of swertiamarin. J Phrama Sci 66:1547–1549

    Google Scholar 

  • Bowling AJ, Vaung KC, Hoagland RE, Stetina K, Boyette CA (2010) Immunohistochemical investigation of the necrotrophic phase of the fungus Colletotrichum gloeosporoides in the biocontrol of hemp sesbania (Sesbania exalatata; Papilionaceae). Am J Bot 97:1915–1925

    PubMed  Google Scholar 

  • Capataz-Tafur J, Hernández-Sánchez AM, Rodríguez-Monroy M, Trejo-Tapia G, Sepúlveda-Jiménez G (2010) Sucrose induced arabinoglactan protein secretion by Beta vulgaris L. cell suspension cultures. Acta Physiol Plant 32:757–764

    CAS  Google Scholar 

  • Casero PJ, Casimoro I, Knox JP (1998) Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204:252–259

    CAS  Google Scholar 

  • Chapman A, Blervacq AS, Tissier JP, Delbreil B, Vasseur J, Hilbert JL (2000a) Cell wall differentiation during early somatic embryogenesis in plants. I. Scanning and transmission electron microscopy study on embryo originating from direct, indirect and adventitious pathways. Can J Bot 78:816–823

    Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000b) Arabinogalactan-proteins in cichorium somatic embryogenesis: Effect of beta-glucosil Yariv reagent and epitope localization during embryo development. Planta 211:305–314

    CAS  PubMed  Google Scholar 

  • Chaves I, Regalado AP, Chen M, Ricardo CP, Showalter AM (2002) Programmed cell death induced by (beta-d-galactosyl)3 Yariv reagent in Nicotiana tabacum, BY-2 suspension-cultured cells. Physiol Plant 116:548–553

    CAS  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attract pollen tubes and stimulates their growth. Cell 82:383–393

    CAS  PubMed  Google Scholar 

  • Čellárová E, Hončariv R (1984) The role of phytochromes in callus growth and plant to in Centaurium erythraea Rafn. tissue culture. In: International symposium of plant growth regulators, Book of abstracts Prague, p 11

    Google Scholar 

  • Čellárová E, Repčáková K, Hončariv R (1984) Vegetative propagation of some medicinal plants through tissue cultures. In: Novák FJ, Havel L, Doležel J (eds) Plant tissue and cell culture propagation to crop improvement. Czech Academy of Sciences, Prague, pp 515–516

    Google Scholar 

  • Čellárová E, Repčáková K, Repčák M, Hončariv R (1983) Morphogenesis in tissue cultures of some medicinal plants. Acta Horticult 132:249–256

    Google Scholar 

  • Dolan L, Linstead P, Roberts K (1995) An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the arabidopsis root. Protoplasma 189:149–155

    CAS  Google Scholar 

  • Dusbábaková J, Nečásek J, Peština K (1985) Crown gall tumors in Centaurium. Biol Plant 27:465–467

    Google Scholar 

  • Egertsdotter U, von Arnold S (1995) Importance of arabinogalactan-proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 93:334–345

    CAS  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface. Plant Physiol 153:403–419

    CAS  PubMed Central  PubMed  Google Scholar 

  • European Pharmacopoeia (2010) Centaurii herba, Main vol 7, 7th edn. DQS, Strasbourg. pp 1095–1096

    Google Scholar 

  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan proteins: structure, biosynthesis and function. Ann Rev Plant Physiol 34:47–70

    CAS  Google Scholar 

  • Flora Europaea Online Database (2012) Royal Botanic garden Edinburgh, Edinburgh. http://rbg-web2.org.uk/FE/fe.html. Cited by 26 July 2012

  • Fragkostefanakis S, Dandachi F, Kalaitzis P (2012) Expression of arabinogalactan proteins during tomato fruit ripening and in response to wounding, hypoxia and anoxia. Plant Physiol Biochem 52:112–118

    CAS  PubMed  Google Scholar 

  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331

    CAS  PubMed  Google Scholar 

  • Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB, Bačić A (2004) Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in decreased efficiency of Agrobacterium transformation. Plant Physiol 135:2162–2171

    CAS  PubMed Central  PubMed  Google Scholar 

  • GRIN Online database (2012) USDA, ARS, National Genetic Resources Program. Germplasm Resousces Information Network. national Germplasm Resources Laboratory, Beltsville, Maryland. http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl. Cited by 26 July 2012

  • Guan Y, Nothnagel EA (2004) Binding of arabinogalactan proteins by Yariv phenylglygo-side triggers wound-like responses in arabidopsis cell culture. Plant Physiol 135:1345–1366

    Google Scholar 

  • Hawezi T, Jardinaud F, Alibert G, Kallerhoff J (2003) A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes. Plant Cell Tiss Org Cult 73:81–86

    Google Scholar 

  • Hu Y, Qin Y, Zhao J (2006) Localization of arabinogalactan protein epitope and effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana. Protoplasma 229:21–31

    CAS  PubMed  Google Scholar 

  • Ishiguro K, Yamaki M, Takagi S, Ikeda Y, Kawakami K, Ito K, Nose T (1998) Studies on iridoid-related compounds. V. Antitumor activity of iridoid derivatives-periodate oxidation products. J Pharmacobiol Dyn 11:131–136

    Google Scholar 

  • Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (1997) Comparative investigation of secoiridoid compounds of Centaurium erythraea grown in nature and cultured in vitro. Pharmaceut Pharmacol Letts 7:30–32

    Google Scholar 

  • Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (2000) Xanthone compounds of Centaurium erythraea grown in nature and cultured in vitro. Pharmaceut Pharmacol Letts 10:23–25

    Google Scholar 

  • Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (2002) Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum. Planta Med 68:944–946

    PubMed  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco, USA

    Google Scholar 

  • Jensen SR, Schripsema J (2002) Chemotaxonomy and pharmacology of Gentianaceae. In: Struve L, Albert V (eds) Gentianaceae-systematics and natural history. Cambridge University Press, London, pp 573–631

    Google Scholar 

  • Jermin MA (1978) Isolation from the flowers of Dryandra praemosa of a flavonol glycoside that reacts with beta-lectins. Aust J Plant Physiol 5:697–705

    Google Scholar 

  • Kaouadji M, Vaillant I, Mariotte AM (1986) Polyoxygenated xanthones from Centaurium erythraea roots. J Nation Prod 49:359

    Google Scholar 

  • Karuppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 13:1222–1239

    Google Scholar 

  • Knox JP (2006) Arabinogalactan proteins (AGPs) and plant development. Foods Food Ingred J Jpn 211:1–6

    Google Scholar 

  • Knox JP, Day S, Roberts K (1989) A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 106:47–56

    CAS  Google Scholar 

  • Knox JP, Linstead PJ, Peart J, Cooper C, Robert SK (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1:317–326

    CAS  PubMed  Google Scholar 

  • Konieczny R, Świerczynska J, Czaplicki AZ, Bohdanowicz J (2007) Distribution of pectin and arabinogalactan protein epitopes during organogenesis from androgenic callus of wheat. Plant Cell Rep 26:355–363

    CAS  PubMed  Google Scholar 

  • Kreuger M, Van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189:243–248

    CAS  Google Scholar 

  • Kreuger M, Van Holst GJ (1995) Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta 197:135–141

    CAS  Google Scholar 

  • Kuo HL, Chen JT, Chang WC (2005) Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalenopsis ‘Litle Steve’. In Vitro Cell Dev Biol-Plant 41:453–456

    Google Scholar 

  • Laureová D, Čellárová E, Honačariv R (1986) Tolerance of plant tissue of Centaurium erythraea to increased concentrations of ions present in soils Eastern Slovakian lowlands. In: Repčák M (ed) Dni rastlinnej fyziológie IV. Slovenska Botaničká Spoločnost pri Sav, pp 221–222

    Google Scholar 

  • Lee CB, Kim S, McClure B (2008) Pollen proteins bind to the C/terminal domain of Nicotiana alata pistil arabinogalactan proteins. J Biol Chem 283:26965–26973

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Lucau-Danila A, Laborde L, Legrand S, Hout L, Hot D, Lemoine Y, Hilbert JL, Hawkins S, Quillet MC, Hendriks T, Blervacq AS (2010) Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.). BMC Plant Biol 10:122

    PubMed Central  PubMed  Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meravý L (1987) Phenolic compounds in tissue culture of Centaurium erythraea. Biol Plant 29:81–87

    Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Namasivayam P, Skepper JM, Hanke D (2010) Distribution of arabinogalactan protein (AGP) epitopes on the anther-derived embryoid culture of Brassica napus. Pertanica J Trop Agri Sci 33:303–313

    Google Scholar 

  • Nguema-Ona E, Bannigan A, Chevalier L, Baskin TI, Driouich A (2007) Disruption of arabinogalactan proteins disorganised cortical microtubules in the root of Arabidopsis thaliana. Plant J 52:240–251

    CAS  PubMed  Google Scholar 

  • Niiho Y, Yamazaki T, Nakajima Y, Yamamoto T, Ando H, Hirai Y, Toriizuka K, Ida Y (2006) Gastroprotective effects of bitter principles isolated from gentian root and Swertia herb on experimentally-induced gastric lesion in rats. J Nat Med 60:82–88

    CAS  Google Scholar 

  • Nikolova-Damyanova B, Handjieva N (1996) Quantitative determination of swertiamarin and gentiopicroside in Centaurium erythraea and C. turcicum by densitometry. Phytochem Anal 7:140–142

    CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    CAS  PubMed  Google Scholar 

  • Pan X, Yang X, lin G, Zou R, Chen H, Šamaj J, Xu C (2011) Ultrastructural changes and distribution of arabinogalactan proteins during somatic embryogenesis of banana (Musa spp. AAA cv. `Yueyoukang 1`). Physiol Plant 142:372–389

    CAS  PubMed  Google Scholar 

  • Park MH, Suyuki Y, Chono M, Knox JP, Yamaguchi I (2003) CsAGP1, a gibberellin-response gene from cucumber hypocotyls, encodes a classical arabinogalactan proteins and is involved in stem elongation. Plant Physiol 131:1450–1495

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park YG, Son SH (1988) In vitro organogenesis and somatic embryogenesis from punctured leaf of Populus nigra x P. maximowiczii. Plant Cell Tiss Org Cult 15:95–105

    CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:807–1819

    Google Scholar 

  • Pauli GF, Nauman M, Fischer NH (1995) Application of soft pulse 1D NMR-sweroside from a potential native American anti-TB drug. Spectrosc Lett 28:903–913

    CAS  Google Scholar 

  • Pennell RI, Roberts K (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344:547–549

    Google Scholar 

  • Pereira LG, Coimbra S, Monteiro HOL, Sottomayour M (2006) Expression of arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana. Planta 223:374–380

    CAS  PubMed  Google Scholar 

  • Phytochemical and Ethnobotanical Database (2012) USDA-ARN-NGRL, Beltsville Agricultural Research Center, Belstville, Maryland. http://www.ars-grin.gov/cgi/bin/duke/ethnobot.pl. Cited by 26 July 2012

  • Piatczak E, Królicka A, Wysokińska H (2006) Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep 25:1308–1315

    CAS  PubMed  Google Scholar 

  • Piatczak E, Wielanek M, Wysokińska H (2005) Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci 168:431–437

    CAS  Google Scholar 

  • Piatczak E, Wysokińska H (2003) In vitro regeneration of Centaurium erythraea Rafn from shoot tips and other seedling explants. Acta Soc Bot Pol 72:283–288

    Google Scholar 

  • Qin Y, Zhao J (2007) Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sex Plant Reprod 20:213–224

    CAS  Google Scholar 

  • Rodriguez S, Wolfender JL, Hakizamungu E, Hostettmann K (1995) An antifungal naphthaquinone, xanthones and secoiridoids from Swertia calycina. Planta Med 61:362–364

    CAS  PubMed  Google Scholar 

  • Rojas A, Bah M, Rojas JI, Gutiérez DM (2000) Smooth muscle relaxing activity of gentiopicroside isolated from Gentiana spathacea. Planta Med 66:765–767

    CAS  PubMed  Google Scholar 

  • Roy S, Jauh GY, Hepler PK, Lord EM (1998) Effect of Yariv phenylglucoside on cell wall assembly in the lily pollen tube. Planta 204:450–458

    CAS  PubMed  Google Scholar 

  • Rumyantseva NI (2005) Arabinogalactan proteins: involvement in plant growth and morphogenesis. Biochemistry (Moscow) 70:1073–1085

    CAS  Google Scholar 

  • Saare-Surminski K, Preil W, Knox JP, Lieberei R (2000) Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures of Euphorbia pulcherrima. Physiol Plant 108:180–187

    CAS  Google Scholar 

  • Schimmer O, Mauthner H (1996) Polymethoxylated xanthones from herb of Centaurium erythraea with strong antimutagenic properties in Salmonella typhimurium. Planta Med 62:561–564

    CAS  PubMed  Google Scholar 

  • Schindler T, Bergfeld R, Schopfer P (1995) Arabinogalactan proteins in maize coleoptiles: developmental relationship to cell death during xylem differentiation but not to extension growth. Plant J 7:25–36

    CAS  PubMed  Google Scholar 

  • Schopfer P (1990) Cytochemical identification of arabinogalactan protein in the outer epidermal wall of maize coleoptiles. Planta 183:139–142

    Google Scholar 

  • Schultz CJ, Gilson P, Oxley D, Youl J, Bacic A (1998) GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci 3:426–431

    Google Scholar 

  • Seifert G, Roberts K (2007) The biology of arabinogalactan proteins. Ann Rev Plant Biol 58:137–161

    CAS  Google Scholar 

  • Serpe MD, Nothnagel EA (1994) Effect of Yariv phenylglycosides on rosa cell suspensions: evidence for the involvement of arabinogalactan-protein in cell proliferation. Planta 193:542–550

    CAS  Google Scholar 

  • Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required fro normal cell expansion. Plant Cell 15:19–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Showalter AM (2001) Arabinogalactan proteins: Structure, expression and function. Cell Mol Life Sci 58:1399–1417

    CAS  PubMed  Google Scholar 

  • Smallwood M, Yates EA, Willats WGT, Martin H, Knox JP (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459

    CAS  Google Scholar 

  • Sommer-Knudsen J, Bačić A, Clarke AE (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47:483–497

    CAS  Google Scholar 

  • Stacey NJ, Roberts K, Carpita NC, Wells B, McCann MC (1995) Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. Plant J 8:891–906

    CAS  Google Scholar 

  • Stacey NJ, Roberts K, Knox JP (1990) Patterns of expression of the JIM 4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. Planta 180:285–292

    CAS  PubMed  Google Scholar 

  • Subotić A, Grubišić D (2007) Histological analysis of somatic embryogenesis and adventitious formation from root explants of Centaurium erythreae Gillib. Biol Plant 51:514–516

    Google Scholar 

  • Subotić A, Budimir S, Grubišić D (2003) Direct regeneration of shoots from hairy root cultures of Centaurium erythreae inoculated with Agrobacterium rhizogenes. Biol Plant 47:617–619

    Google Scholar 

  • Subotić A, Janković T, Jevremović S, Grubišić D (2006) Plant tissue culture and secondary metabolites productions of Centaurium erythraea Rafn., a medical plant. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues (1st edn). Global Science Books, London, vol 2, pp 564–570

    Google Scholar 

  • Subotić A, Jevremović S, Grubišić D (2009a) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea-Valuable medicinal plant. Sci Horticult 120:386–390

    Google Scholar 

  • Subotić A, Jevremović S, Trifunović M, Petrić M, Milošević S, Grubišić D (2009b) The influence of gibberelic acid and paclobutrazol on induction of somatic embryogenesis in wild type and hairy root cultures of Centaurium erythraea Gillib. Afr J Biotech 8:3223–3228

    Google Scholar 

  • Subotić A, Jevremović S, Grubišić D, Janković T (2009c) Spontaneous plant regeneration and production of secondary metabolites from hairy root cultures of Centaurium erythraea Rafn. In: Jain SM, Saxena PK (eds) Methods in Molecular Biology, Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, vol 547, Humana Press, a part of Springer Science Business Media, New York city. pp 205–217

    Google Scholar 

  • Šamaj J, Baluška F, Bobák M, Volkmann D (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep 18:369–374

    Google Scholar 

  • Šamaj J, Salaj T, Matusovs R, Salaj J, Takac T, Šamajova O, Volkmann D (2008) Arabinogalactan-protein epitope gal4 is differentially regulated and localized in cell lines of hybrid fir (Abie alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Rep 27:221–229

    PubMed  Google Scholar 

  • Šamaj J, Šamajova O, Peters M, Baluška F, Lichthseidi I, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan protein epitope associated with endomembranes of plant cell. Protoplasma 212:186–196

    Google Scholar 

  • Tang XC, He YQ, Wang Y, Sun MX (2006) The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J Exp Bot 57:2639–2650

    CAS  PubMed  Google Scholar 

  • Thompson HJM, Knox JP (1998) Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding β-glucosyl Yariv reagent. Planta 205:32–38

    CAS  Google Scholar 

  • Vágnerova H (1992) Micropropagation of common centaury (Centaurium erythraea Rafn.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. High-Tech and Micropropagation III, vol 19. Springer, Berlin, pp 388–398

    Google Scholar 

  • Valentão P, Andrade PB, Silva E, Vincente A, Santos H, Bastos ML, Seabra R (2002) Methoxylated xanthones in the quality control of small centaury (Centaurium erythraea) flowering tops. J Agri Food Chem 50:460–463

    Google Scholar 

  • Valentão P, Areias F, Amaral J, Andrade PB, Seabra R (2000) Tetraoxygenated xanthones from Centaurium erythraea. Nat Prod Lett 14:319–323

    Google Scholar 

  • van der Sluis WG (1985) Chemotaxonomical investigations of the genera Blackstonia and Centaurium (Gentianaceae). Plant Syst Evol 149:253–286

    Google Scholar 

  • van der Sluis WG, Van der Nat JM, Spek ÁL, Ikeshiro Y, Labadie RP (1983) Secoiridoids and xanthones in the genus Centaurium. Part VI: Gentiogenal, a conversion product of gentiopicrin (gentiopicroside). Planta Med 49:211–215

    PubMed  Google Scholar 

  • van Hengel AJ, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell of the primary root, plays a role in root regeneration and seed germination. Plant J 36:256–270

    PubMed  Google Scholar 

  • Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9:919–925

    CAS  PubMed  Google Scholar 

  • Wiśniewska E, Majewska-Sawka A (2006) Cell wall polysaccharides in differentiating anthers and pistils of Lolium perenne. Protoplasma 228:65–71

    PubMed  Google Scholar 

  • Wiśniewska E, Majewska-Sawka A (2007) Arabinogalactan-proteins stimulate the organogenesis of guard cell protoplasts-derived callus in sugar beet. Plant Cell Rep 26:1457–1467

    PubMed  Google Scholar 

  • Wu HM, Wong E, Ogdahl J, Cheung AY (2000) A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J 22:165–176

    CAS  PubMed  Google Scholar 

  • Xie D, Ma L, Šamaj J, Xu C (2011) Immunohistochemical analysis of cell wall hydroxyproline—rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincase infection and fusaric acid treatment. Plant Cell Rep 30:155–1569

    Google Scholar 

  • Xu YW, Zeng JW, Zou YT, Husaini AM, Yao RY, Wu DG, Wu W (2011) Combined effect of dark and wounding on regeneration potential of Houttuynia cordata Thunb. leaves. Indian J Exp Bot 49:540–546

    CAS  Google Scholar 

  • Yariv J, Lis H, Katchalski E (1967) Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem J 105:1C

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yariv J, Rapport MM, Graf L (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 85:383–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yates EA, Valdor JF, Haslam SM, Morris RM, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. JP Knox (Centre for Plant Science, University of Leeds, UK) for the gift of monoclonal antibodies. This research was sponsored by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project Number ON173015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Subotić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trifunović, M., Subotić, A., Petrić, M., Jevremović, S. (2015). The Role of Arabinogalactan Proteins in Morphogenesis of Centaurium erythraea Rafn In Vitro. In: Rybczyński, J., Davey, M., Mikuła, A. (eds) The Gentianaceae - Volume 2: Biotechnology and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54102-5_5

Download citation

Publish with us

Policies and ethics