Skip to main content

Speed-Invariant Gait Recognition

  • Chapter
  • First Online:
Signal and Image Processing for Biometrics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 292))

Abstract

We propose a method of speed-invariant gait recognition in a unified framework of model- and appearance-based approaches. When a person changes his/her walking speed, kinematic features (e.g., stride and joint angle) are changed while static features (e.g., thigh and shin lengths) are preserved. Based on the fact, firstly, static and kinematic features are decoupled from a gait silhouette sequence by fitting a human model. Secondly, a factorization-based stride transformation model for the kinematic features is created by using a training set for multiple non recognition-target persons on multiple speeds. This model can transform the kinematic features from a gallery speed to another arbitrary probe speed. Because only the kinematic features are insufficient to achieve a high recognition performance, we therefore finally synthesize a gait silhouette sequence by combining the preserved static features and the transformed kinematic features for matching. Experiments with the OU-ISIR Gait Database show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Publicly available at http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitTM.html.

References

  1. Aqmar MR, Shinoda K, Furui S (2012) Robust gait-based person identification against walking speed variations. IEICE Trans Info Syst E95.D(2):668–676

    Google Scholar 

  2. Ariyanto G, Nixon M (2012) Marionette mass-spring model for 3d gait biometrics. In: Proceedings of the 5th IAPR international conference on biometrics, pp 354–359

    Google Scholar 

  3. Bashir K, Xiang T, Gong S (2009) Gait representation using flow fields. In: Proceedings of the 20th British machine vision conference. London

    Google Scholar 

  4. Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recogn Lett 31(13):2052–2060

    Google Scholar 

  5. BBC News (2008) How biometrics could change security. http://news.bbc.co.uk/2/hi/programmes/click_online/7702065.stm

  6. Bobick A, Johnson A (2001) Gait recognition using static activity-specific parameters. In: Proceedings of the 14th IEEE conference on computer vision and pattern recognition, vol 1, pp 423–430

    Google Scholar 

  7. Bouchrika I, Goffredo M, Carter J, Nixon M (2011) On using gait in forensic biometrics. J Forensic Sci 56(4):882–889

    Google Scholar 

  8. Bouchrika I, Nixon M (2008) Exploratory factor analysis of gait recognition. In: Proceedings of the 8th IEEE international conference on automatic face and gesture recognition, pp 1–6. Amsterdam, The Netherlands

    Google Scholar 

  9. Boulgouris N, Plataniotis K, Hatzinakos D (2006) Gait recognition using linear time normalization. Pattern Recogn 39(5):969–979

    Article  MATH  Google Scholar 

  10. Boulgouris N, Plataniotis K, Hatzinakos D (2004) Gait recognition using dynamic time warping. In: Proceedings of the IEEE 6th workshop on multimedia signal processing, pp 263–266. doi:10.1109/MMSP.2004.1436543

  11. Cunado D, Nixon M, Carter J (2003) Automatic extraction and description of human gait models for recognition purposes. Comput Vis Image Underst 90(1):1–41

    Article  Google Scholar 

  12. Cuntoor N, Kale A, Chellappa R (2003) Combining multiple evidences for gait recognition. In: Proceedings of the 28th IEEE international conference on acoustics, speech, and signal processing, vol 3, pp 33–36

    Google Scholar 

  13. Gavrila DM (1999) The visual analysis of human movement: a survey. Comput Vis Image Underst 73(1):82–98

    Article  MATH  Google Scholar 

  14. Gross R, Shi J (2001) The cmu motion of body (mobo) database. Technical report, CMT

    Google Scholar 

  15. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Article  Google Scholar 

  16. Iwama H, Muramatsu D, Makihara Y, Yagi Y (2013) Gait verification system for criminal investigation. IPSJ Trans Comput Vis Appl 5:163–175

    Google Scholar 

  17. Iwama H, Okumura M, Makihara Y, Yagi Y (2012) The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans Info Forensic Secur 7(5):1511–1521

    Google Scholar 

  18. Kusakunniran W, Wu Q, Zhang J, Li H (2012a) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circ Syst Video Technol 22(6):966–980

    Google Scholar 

  19. Kusakunniran W, Wu Q, Zhang J, Li H (2012b) Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Trans Syst Man Cybern B Cybern 42(6):1654–1668. doi:10.1109/TSMCB.2012.2197823

    Google Scholar 

  20. Lam THW, Cheung KH, Liu JNK (2011) Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn 44:973–987. http://dx.doi.org/10.1016/j.patcog.2010.10.011

  21. Liu Z, Sarkar S (2004) Simplest representation yet for gait recognition: averaged silhouette. In: Proceedings of the 17th international conference on pattern recognition, vol 1, pp 211–214

    Google Scholar 

  22. Liu Z, Sarkar S (2006) Improved gait recognition by gait dynamics normalization. IEEE Trans Pattern Anal Mach Intell 28(6):863–876. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.122

    Google Scholar 

  23. Makihara Y, Mannami H, Tsuji A, Hossain M, Sugiura K, Mori A, Yagi Y (2012) The ou-isir gait database comprising the treadmill dataset. IPSJ Trans Comput Vis Appl 4:53–62

    Google Scholar 

  24. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. In: Proceedings of the 9th European conference on computer vision, pp 151–163. Graz, Austria

    Google Scholar 

  25. Makihara Y, Yagi Y (2008) Silhouette extraction based on iterative spatio-temporal local color transformation and graph-cut segmentation. In: Proceedings of the 19th international conference on pattern recognition. Tampa, Florida

    Google Scholar 

  26. Mori A, Makihara Y, Yagi Y (2010) Gait recognition using period-based phase synchronization for low frame-rate videos. In: Proceedings of the 20th international conference on pattern recognition, pp 2194–2197. Istanbul, Turkey

    Google Scholar 

  27. Mowbray S, Nixon M (2003) Automatic gait recognition via fourier descriptors of deformable objects. In: Proceedings of the 1st IEEE international conference on advanced video and signal based surveillance, pp 566–573

    Google Scholar 

  28. Muramatsu D, Makihara Y, Yagi Y (2013) Quality-dependent view transformation model for cross-view gait recognition. In: Proceedings of the IEEE 6th international conference on biometrics: theory, applications and systems. Paper ID: 12, pp 1–8, Washington DC

    Google Scholar 

  29. Murase H, Nayar SK (1995) Visual learning and recognition of 3-d objects from appearance. Int J Comput Vis 14(1):5–24. doi:10.1007/BF01421486, http://dx.doi.org/10.1007/BF01421486

  30. Murase H, Sakai R (1996) Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recogn Lett 17:155–162

    Google Scholar 

  31. Nixon M, Carter J, Shutler J, Grant M (2001) Experimental plan for automatic gait recognition. Technical report, Southampton

    Google Scholar 

  32. Niyogi S, Adelson E (1994) Analyzing and recognizing walking figures in xyt. In: Proceedings of the 7th IEEE conference on computer vision and pattern recognition, pp 469–474

    Google Scholar 

  33. Phillips P, Moon H, Rizvi S, Rauss P (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  34. Poh N, Kittler J, Bourlai T (2007) Improving biometric device interoperability by likelihood ratio-based quality dependent score normalization. In: Proceedings of the IEEE 3rd international conference on biometrics: theory, applications and systems, pp 1–5

    Google Scholar 

  35. Sarkar S, Phillips J, Liu Z, Vega I, ther PG, Bowyer K (2005) The humanid gait challenge problem: data sets performance and analysis. IEEE Trans of Pattern Anal Mach Intell 27(2):162–177

    Google Scholar 

  36. Tanawongsuwan R, Bobick A (2001) Gait recognition from time-normalized joint-angle trajectories in the walking plane. In: Proceedings of the 14th IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 726–731. doi:10.1109/CVPR.2001.991036

  37. Tanawongsuwan R, Bobick A (2003) Performance analysis of time-distance gait parameters under different speeds. In: Proceedings of the 4th international conference on audio- and video-based biometric person authentication, pp 715–724

    Google Scholar 

  38. Tanawongsuwan R, Bobick A (2004) Modelling the effects of walking speed on appearance-based gait recognition. In: Proceedings of the 17th IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 783–790. http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.158

  39. Tan D, Huang K, Yu S, Tan T (2006) Efficient night gait recognition based on template matching. In: Proceedings of the 18th international conference on pattern recognition, vol 3. Hong Kong, China, pp 1000–1003

    Google Scholar 

  40. Tomasi C, Takeo K (1992) Shape and motion from image streams under orthography: a factorization method. Int J Comput Vis 9:137–154

    Article  Google Scholar 

  41. Urtasun R, Fua P (2004) 3d tracking for gait characterization and recognition. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition, pp 17–22

    Google Scholar 

  42. Wang L, Ning H, Tan T, Hu W (2003) Fusion of static and dynamic body biometrics for gait recognition. In: Proceedings of the 9th international conference on computer vision, vol 2, pp 1449–1454

    Google Scholar 

  43. Wang C, Zhang J, Wang L, Pu J, Yuan X (2012) Human identification using temporal information preserving gait template. IEEE Trans Pattern Anal Mach Intell 34(11):2164–2176. doi:10.1109/TPAMI.2011.260

    Google Scholar 

  44. Yam C, Nixon M, Carter J (2001) Extended model based automatic gait recognition of walking and running. In: Proceedings of the 3rd international conference on audio and video-based person authentication, pp 278–283. Halmstad, Sweden

    Google Scholar 

  45. Yu S, Wang L, Hu W, Tan T (2004) Gait analysis for human identification in frequency domain. In: Proceedings of the 3rd international conference on image and graphics, pp 282–285

    Google Scholar 

  46. Zhao G, Liu G, Li H, Pietikainen M (2006) 3d gait recognition using multiple cameras. In: Proceedings of the 7th international conference on automatic face and gesture recognition, pp 529–534

    Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Scientific Research (S) 21220003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Makihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Makihara, Y., Tsuji, A., Yagi, Y. (2014). Speed-Invariant Gait Recognition. In: Scharcanski, J., Proença, H., Du, E. (eds) Signal and Image Processing for Biometrics. Lecture Notes in Electrical Engineering, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54080-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54080-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54079-0

  • Online ISBN: 978-3-642-54080-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics