Skip to main content

Using Score Fusion for Improving the Performance of Multispectral Face Recognition

  • Chapter
  • First Online:
Signal and Image Processing for Biometrics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 292))

  • 1376 Accesses

Abstract

Score fusion combines several scores from multiple modalities and/or multiple matchers, which can increase the accuracy of face recognition meanwhile decrease false accept rate (FAR). Specifically, the face scores are generated from two-spectral bands (visible and thermal) and from three matchers (circular Gaussian filter, face pattern byte, elastic bunch graphic matching). In this chapter, we first review the three face recognition algorithms (matchers), then present and compare the fusion performance of seven fusion methods: linear discriminant analysis (LDA), k-nearest neighbor (KNN), artificial neural network (ANN), support vector machine (SVM), binomial logistic regression (BLR), Gaussian mixture model (GMM), and hidden Markov model (HMM). Our experiments are conducted with the Alcon State University Multispectral face dataset that currently consists of two spectral images from 105 subjects. The experimental results show that all score fusions can improve the accuracy meanwhile reduce the FAR, and the KNN score fusion gives the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang H, Koschan A, Abidi M, Kong SG, Won C-H (2008) Multispectral visible and infrared imaging for face recognition. In: IEEE computer society conference on computer vision and pattern recognition workshops

    Google Scholar 

  2. Bendada A, Akhloufi MA (2010) Multispectral face recognition in texture space. In: Canadian conference on computer and robot vision, pp 101–106

    Google Scholar 

  3. Bebis G, Gyaourova A, Singh S, Pavlidis I (2006) Face recognition by fusing thermal infrared and visible imagery. Image Vis Comput 24:727–742

    Article  Google Scholar 

  4. Arandjelovic O, Hammoud RI, Cipolla R (2006) On person authentication by fusing visual and thermal face biometrics. In: Proceedings of the IEEE international conference on video and signal based surveillance

    Google Scholar 

  5. Nandakumar K, Chen Y, Dass SC, Jain AK (2008) Likelihood ratio-based biometric score fusion. IEEE Trans Pattern Anal Mach Intell 30(2):342–347

    Article  Google Scholar 

  6. Poh N, Bourlai T et al (2009) Benchmarking quality-dependent and cost-sensitive multimodal biometric fusion algorithms. IEEE Trans Inf Forensics Secur 4(4), 849–866

    Google Scholar 

  7. Zheng Y, Elmaghraby A (2011) A brief survey on multispectral face recognition and multimodal score fusion. In: IEEE international symposium on signal processing and information and technology (ISSPIT), pp 543–550

    Google Scholar 

  8. Zheng Y (2011) Orientation-based face recognition using multispectral imagery and score fusion. Opt Eng 50:117202

    Article  Google Scholar 

  9. Hill DLG, Batchelor P (2001) Registration methodology: concepts and algorithms. In: Hajnal JV, Hill DLG, Hawkes DJ (eds) Medical image registration. CRC, Boca Raton

    Google Scholar 

  10. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. Proc CVPR 1:511–518

    Google Scholar 

  11. Viola P, Jones M (2001) Robust real-time object detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  12. Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection. Proc Int Conf Image Process 1:900–903

    Article  Google Scholar 

  13. Freund Y, Schapire R (1995) A decision theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory: Eurocolt ’95, pp 23–37

    Google Scholar 

  14. Zhao W, Chellappa R, Krishnaswamy A (1998) Discriminant analysis of principal components for face recognition. In: Proceedings of IEEE international conference on face and gesture recognition, FG’98, 14–16, pp 336–341

    Google Scholar 

  15. Zheng Y (2012) Face detection and eyeglasses detection for thermal face recognition. In: Proceedings of SPIE 8300

    Google Scholar 

  16. Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using LDA-based algorithms. IEEE Trans Neural Netw 14(1):195–200

    Article  Google Scholar 

  17. Wiskott L, Fellous JM, Krüger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  18. Wiskott L, Fellous J-M, Krüger N, von der Malsburg C (1999) Face recognition by elastic bunch graph matching. In: Jain LC et al (eds) Intelligent biometric techniques in fingerprint and face recognition. CRC Press, Boca Raton, pp 355–396

    Google Scholar 

  19. Zhao W, Chellappa R, Rosenfeld A, Phillips PJ (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

  20. Kuncheva LI (2002) A theoretical study on six classifier fusion strategies. IEEE Trans Pattern Anal Mach Intell 24(2):281–286

    Article  Google Scholar 

  21. Brunelli R, Falavigna D (1995) Person identification using multiple cues. IEEE Trans Pattern Anal Mach Intell 17(10):955–966

    Article  Google Scholar 

  22. Fierrez-Aguilar J, Ortega-Garcia J, Gonzalez-Rodriguez J, Bigun J (2005) Discriminative multimodal biometric authentication based on quality measures. Pattern Recogn 38(5):777–779

    Article  Google Scholar 

  23. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    MATH  Google Scholar 

  24. McCullagh P, Nelder JA (1990) Generalized linear models. Chapman & Hall, New York

    Google Scholar 

  25. Kil RM, Koo I (2001) Optimization of a network with Gaussian kernel functions based on the estimation of error confidence intervals. Proc IJCNN 3:1762–1766

    Google Scholar 

  26. Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2:121–167

    Article  Google Scholar 

  27. Prabhakar S, Jain AK (2002) Decision-level fusion in fingerprint verification. Pattern Recogn 35(4):861–874

    Article  MATH  Google Scholar 

  28. Ulery B, Hicklin AR, Watson C, Fellner W, Hallinan P (2006) Studies of biometric fusion. NIST Interagency Report

    Google Scholar 

  29. McLachla G, Peel D (2000) Finite mixture models. Wiley, Hoboken

    Book  Google Scholar 

  30. Figueiredo M, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  31. Baum LE, Petrie T (1966) Statistical inference for probability functions of finite state markov chains. Ann Math Stat 37:1554–1563

    Article  MATH  MathSciNet  Google Scholar 

  32. Kahler B, Blasch E (2011) Decision-level fusion performance improvement from enhanced HRR radar clutter suppression. J Adv Inf Fusion 6 (2):101–118

    Google Scholar 

  33. Reese K, Zheng Y, Elmaghraby A (2012) A comparison of face detection algorithms in visible and thermal spectrums. In: International conference on advances in computer science and application

    Google Scholar 

Download references

Acknowledgments

The current research is funded by the Department of Defense Research and Education. The thermal face recognition research was previously supported by the Department of Homeland Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zheng, Y. (2014). Using Score Fusion for Improving the Performance of Multispectral Face Recognition. In: Scharcanski, J., Proença, H., Du, E. (eds) Signal and Image Processing for Biometrics. Lecture Notes in Electrical Engineering, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54080-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54080-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54079-0

  • Online ISBN: 978-3-642-54080-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics