Skip to main content

Human Tracking in Non-cooperative Scenarios

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 292))

Abstract

In this chapter we discuss human tracking problems for biometric applications in non-cooperative scenarios. The chapter starts with an overview of modern biometric authentication systems. Special attention is paid to vision system construction and its design fundamentals. Next the existing image segmentation methods are presented with emphasis on procedures suitable for image pre-segmentation during the acquisition process. The chapter ends with some sample processing architectures presentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.oki.com/en/iris/

  2. 2.

    http://www.birger.com/

  3. 3.

    Motion blob—region in the image corresponding to moving object.

  4. 4.

    http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

  5. 5.

    The equation is given for scalar \(X_t\) values. In high dimensional spaces with full covariance matrices, it is sometimes advantageous to use a constant learning rate \(\rho \) to simplify computations and provide faster model adaptation.

References

  1. Bashir F, Usher D, Casaverde P, Friedman M (2008) Video surveillance for biometrics: long-range multi-biometric system. In: IEEE 5th international conference on advanced video and signal based surveillance 2008 (AVSS ’08), pp 175–182. doi:10.1109/AVSS.2008.28

  2. Blake A, Isard M (1998) Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion, 1st edn. Springer-Verlag, Secaucus

    Book  Google Scholar 

  3. Bodor R, Jackson B, Papanikolopoulos N (2003) Vision-based human tracking and activity recognition. In: Proceedings of the 11th Mediterranean conference on control and automation, vol 1. Citeseer

    Google Scholar 

  4. Candamo J, Shreve M, Goldgof D, Sapper D, Kasturi R (2010) Understanding transit scenes: a survey on human behavior-recognition algorithms. IEEE Trans Intell Transp Syst 11(1):206–224. doi:10.1109/TITS.2009.2030963

    Article  Google Scholar 

  5. Degtyarev N, Seredin O (2010) Comparative testing of face detection algorithms. In: Proceedings of the 4th international conference on image and signal processing (ICISP’10). Springer-Verlag, Berlin, pp 200–209

    Google Scholar 

  6. Dong W, Sun Z, Tan T (2009) A design of iris recognition system at a distance. In: Chinese conference on pattern recognition 2009 (CCPR 2009), pp 1–5. doi:10.1109/CCPR.2009.5344030

  7. Elgammal A, Davis L (2001) Probabilistic framework for segmenting people under occlusion. In: Proceedings of 8th IEEE international conference on computer vision 2001 (ICCV 2001), vol 2, pp 145–152. doi:10.1109/ICCV.2001.937617

  8. Forrester JV, Dick AD, McMenamin PG, Roberts F (2009) The eye, basic sciences in practice. Clinical and experimental optometry 92(1):72–73

    Google Scholar 

  9. Gatica-Perez D, Odobez JM, Ba SO, Smith KC, Lathoud G (2004) Tracking people in meetings with particles. Tech. Rep. Idiap-RR-71-2004, IDIAP, Martigny, Switzerland. In: Proceedings of international workshop on image analysis for multimedia interactive services, invited paper, Montreux, April 2005

    Google Scholar 

  10. Geronimo D, Lopez A, Sappa A, Graf T (2010) Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 32(7):1239–1258. doi:10.1109/TPAMI.2009.122

    Article  Google Scholar 

  11. Grabowski K (2007) Control and illumination system for eye image acquisition stand. In: Proceedings of the 9th workshop for candidates for a doctor degree (OWD), pp 223–228

    Google Scholar 

  12. Grabowski K, Napieralski A (2011) Hardware architecture optimized for iris recognition. IEEE Trans Circuits Syst Video Technol 21(9):1293–1303. doi:10.1109/TCSVT.2011.2147150

    Article  Google Scholar 

  13. Guo G, Jones M, Beardlsey P (2005) A system for automatic iris capturing. Mitsubishi Electric Research Laboratories (MERL)

    Google Scholar 

  14. Hanna KJ, Mandelbaum R, Mishra D, Paragano V, Wixson LE (1996) A system for non-intrusive human iris acquisition and identification. In: Proceedings of IAPR workshop on machine vision applications, pp 200–203

    Google Scholar 

  15. Haritaoglu I, Harwood D, Davis L (2000) W4: real-time surveillance of people and their activities. IEEE Trans Pattern Anal Mach Intell 22(8):809–830. doi:10.1109/34.868683

    Article  Google Scholar 

  16. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  17. International Commission on Illumination (2002) Photobiological safety of lamps and lamp systems. CIE S 009/E.-2002

    Google Scholar 

  18. Juefei-Xu F, Savvides M (2012) Unconstrained periocular biometric acquisition and recognition using cots ptz camera for uncooperative and non-cooperative subjects. In: IEEE workshop on applications of computer vision (WACV) 2012, pp 201–208. doi:10.1109/WACV.2012.6163051

  19. Kollias N (1995) The spectroscopy of human melanin pigmentation. Valdenmar Publishing Co., Overland Park

    Google Scholar 

  20. Kollias N, Baqer A (1987) Absorption mechanisms of human melanin in the visible, 400–720 nm. J Invest Dermatol 89(4):384–388

    Article  Google Scholar 

  21. Kuhn HW (1955) The hungarian method for the assignment problem. Naval Res Logist Q 2(1–2):83–97. doi:10.1002/nav.3800020109

    Article  Google Scholar 

  22. Li X, Chen G, Ji Q, Blasch E (2008) A non-cooperative long-range biometric system for maritime surveillance. In: 19th international conference on pattern recognition 2008 (ICPR 2008), pp 1–4. doi:10.1109/ICPR.2008.4761887

  23. Lipton A, Fujiyoshi H, Patil R (1998) Moving target classification and tracking from real-time video. In: Proceedings of 4th IEEE workshop on applications of computer vision 1998 (WACV ’98), pp 8–14. doi:10.1109/ACV.1998.732851

  24. Matey J, Naroditsky O, Hanna K, Kolczynski R, LoIacono D, Mangru S, Tinker M, Zappia T, Zhao W (2006) Iris on the move: acquisition of images for iris recognition in less constrained environments. Proc IEEE 94(11):1936–1947. doi:10.1109/JPROC.2006.884091

    Article  Google Scholar 

  25. Narayanswamy R, Johnson G, Silveira PX, Wach H (2005) Extending the imaging volume for biometric iris recognition. Appl Opt 44(5):701–712

    Article  Google Scholar 

  26. Illuminating Engineering Society of North America (2005) Recommended practice for photobiological safety for lamps and lamp systems—general requirements. ANSI/IESNA RP-27.1-05

    Google Scholar 

  27. Rosales R, Sclaroff S (1999) 3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. In: IEEE computer society conference on computer vision and pattern recognition 1999, vol 2, pp 117–123. doi:10.1109/CVPR.1999.784618

  28. Sankowski W, Grabowski K, Napieralska M, Zubert M, Napieralski A (2010) Reliable algorithm for iris segmentation in eye image. Image Vis Comput 28(2):231–237. doi:10.1016/j.imavis.2009.05.014

    Article  Google Scholar 

  29. Sankowski W, Grabowski K, Pietek J, Napieralska M, Zubert M (2009) Optimization of iris image segmentation algorithm for real time applications. In: Proceedings of the 16th international conference—mixed design of integrated circuits and systems (MIXDES 2009), pp 671–674

    Google Scholar 

  30. Cahn von Seelen U, Camus T, Venetianer P, Zhang G, Salganicoff M, Negin M (1999) Active vision as an enabling technology for user-friendly iris identification. In: 2nd IEEE workshop on automatic identification advanced technologies, pp 169–172

    Google Scholar 

  31. Siebel NT, Maybank SJ (2002) Fusion of multiple tracking algorithms for robust people tracking. In: Proceedings of the 7th European conference on computer vision—part IV (ECCV ’02). Springer-Verlag, London, pp 373–387

    Google Scholar 

  32. Song X, Nevatia R (2004) Combined face–body tracking in indoor environment. In: Proceedings of the 17th international conference on pattern recognition 2004 (ICPR 2004), vol 4, pp 159–162. doi:10.1109/ICPR.2004.1333728

  33. Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: IEEE computer society conference on computer vision and pattern recognition 1999, vol 2, pp 246–252. doi:10.1109/CVPR.1999.784637

  34. Stauffer C, Grimson W (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757. doi:10.1109/34.868677

    Article  Google Scholar 

  35. Information Technology (2005) Iris image data, vol ISO/IEC 19794–6:2005

    Google Scholar 

  36. Vadakkepat P, Lim P, De Silva L, Jing L, Ling LL (2008) Multimodal approach to human-face detection and tracking. IEEE Trans Ind Electron 55(3):1385–1393. doi:10.1109/TIE.2007.903993

    Article  Google Scholar 

  37. Venugopalan S, Prasad U, Harun K, Neblett K, Toomey D, Heyman J, Savvides M (2011) Long range iris acquisition system for stationary and mobile subjects. In: 2011 international joint conference on biometrics (IJCB), pp 1–8. doi:10.1109/IJCB.2011.6117484

  38. Venugopalan S, Savvides M (2010) Unconstrained iris acquisition and recognition using cots ptz camera. EURASIP J Adv Signal Process 2010(1):938737. doi:10.1155/2010/938737 http://asp.eurasipjournals.com/content/2010/1/938737

  39. Viola P, Jones M, Snow D (2003) Detecting pedestrians using patterns of motion and appearance. In: Proceedings of 9th IEEE international conference on computer vision 2003, vol 2, pp 734–741. doi:10.1109/ICCV.2003.1238422

  40. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154. doi:10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  41. Wang L, Yung N (2012) Three-dimensional model-based human detection in crowded scenes. IEEE Trans Intell Transp Syst 13(2):691–703. doi:10.1109/TITS.2011.2179536

    Article  MathSciNet  Google Scholar 

  42. Wheeler F, Perera A, Abramovich G, Yu B, Tu P (2008) Stand-off iris recognition system. In: 2nd IEEE international conference on biometrics: theory, applications and systems 2008 (BTAS 2008), pp 1–7. doi:10.1109/BTAS.2008.4699381

  43. Yang MH, Kriegman D, Ahuja N (2002) Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1):34–58. doi:10.1109/34.982883

    Article  Google Scholar 

  44. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13+. doi:10.1145/1177352.1177355

    Google Scholar 

  45. Yoon S, Jung HG, Suhr JK, Kim J (2007) Non-intrusive iris image capturing system using light stripe projection and pan-tilt-zoom camera. In: IEEE conference on computer vision and pattern recognition 2007 (CVPR’07), pp 1–7. doi:10.1109/CVPR.2007.383379

  46. Zhang C, Zhang Z (2010) A survey of recent advances in face detection. In: Microsoft Research Technical, Report MSR-TR-2010-66

    Google Scholar 

  47. Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the 7th IEEE international conference on computer vision 1999, vol 1, pp 666–673. doi:10.1109/ICCV.1999.791289

  48. Zhao T, Nevatia R (2004) Tracking multiple humans in complex situations. IEEE Trans Pattern Anal Mach Intell 26(9):1208–1221. doi:10.1109/TPAMI.2004.73

    Article  Google Scholar 

  49. Zhao T, Nevatia R, Wu B (2008) Segmentation and tracking of multiple humans in crowded environments. IEEE Trans Pattern Anal Mach Intell 30(7):1198–1211. doi:10.1109/TPAMI.2007.70770

    Article  Google Scholar 

  50. Zivkovic Z (2004) Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th international conference on pattern recognition 2004 (ICPR 2004), vol 2, pp 28–31. doi:10.1109/ICPR.2004.1333992

  51. Zivkovic Z, Van Der Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Sankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabowski, K., Sankowski, W. (2014). Human Tracking in Non-cooperative Scenarios. In: Scharcanski, J., Proença, H., Du, E. (eds) Signal and Image Processing for Biometrics. Lecture Notes in Electrical Engineering, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54080-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54080-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54079-0

  • Online ISBN: 978-3-642-54080-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics