Skip to main content

Abstract

In Chapter 9 we investigate how to control the supremum of the empirical process over a class of functions. The fundamental theoretical question in this direction is whether there exists a “best possible” method to control this supremum at a given size of the random sample. We offer a natural candidate for such a “best possible” method, in the spirit of the Bednorz-Latała result of Chapter 5. Whether this natural method is actually optimal is a major open problem. To illustrate that meditating on these theoretical questions might help to solve practical problems, we present a somewhat streamlined proofs of two deep recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Am. Math. Soc. 23(2), 535–561 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamczak, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Sharp bounds on the rate of convergence of the empirical covariance matrix. C. R. Math. Acad. Sci. Paris 349(3–4), 195–200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adamczak, R., Latała, R., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails. Ann. Inst. Henri Poincaré Probab. Stat. 48(4), 1103–1136 (2012)

    Article  MATH  Google Scholar 

  4. Bourgain, J.: Random points in isotropic convex sets. In: Convex Geometric Analysis, Berkeley, CA, 1996. Math. Sci. Res. Inst. Publ., vol. 34, pp. 53–58. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  5. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics, vol. 63. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  6. Giné, E., Zinn, J.: Some limit theorems for empirical processes. Ann. Probab. 12, 929–989 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Klartag, B., Mendelson, S.: Empirical processes and random projections. J. Funct. Anal. 225(1), 229–245 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Latała, R.: Weak and strong moments of random vectors. In: Marcinkiewicz Centenary Volume. Banach Center Publ., vol. 95, pp. 115–121. Polish Acad. Sci. Inst. Math, Warsaw (2011)

    Google Scholar 

  9. Mendelson, S.: Empirical processes with a bounded ψ 1-diameter. Geom. Funct. Anal. 20(4), 988–1027 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mendelson, S., Pajor, A., Tomczak-Jaegermann, N.: Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mendelson, S., Paouris, G.: On generic chaining and the smallest singular value of random matrices with heavy tails. J. Funct. Anal. 262(9), 3775–3811 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Talagrand, M.: The Glivenko-Cantelli problem. Ann. Probab. 15, 837–870 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Talagrand, M.: Regularity of infinitely divisible processes. Ann. Probab. 21, 362–432 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talagrand, M. (2014). Theory and Practice of Empirical Processes. In: Upper and Lower Bounds for Stochastic Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54075-2_9

Download citation

Publish with us

Policies and ethics