Skip to main content

Tumors of the Soft Tissue: Using Molecular Tools to Aid in the Diagnosis of Soft Tissue Tumors and the Management of the Sarcoma Patient

  • Chapter
  • First Online:
  • 1042 Accesses

Abstract

Soft tissue tumors are rare. Soft tissue tumors in the skin are even rarer, and the use of molecular testing for soft tissue tumors in the skin is rarer still. With that said, molecular diagnostics has a small but definite (and growing) role in the diagnosis and management of the sarcoma patient. Over the past several decades, the uncovering of soft tissue tumor-specific molecular events, including chromosomal translocations with fusion genes and proto-oncogene amplifications, has advanced the understanding of the biology of these enigmatic tumors and, in some cases, has aided in their reclassification. These same events have led to the development of tumor-specific molecular assays. When used appropriately, as an adjunct to conventional diagnostic methods, the molecular assay can be the dermatopathologist’s most powerful tool for achieving diagnostic accuracy in select settings.

As in other disciplines, the discovery of oncogenic drivers, such as fusion genes and proto-oncogene mutations, should lead to prognostic and theranostic applications. Few of these currently exist for soft tissue tumors, but the list is growing, and soon this class of tumors will join others, embarking toward the world of personalized medicine. This chapter covers select soft tissue tumors with characteristic molecular events, with an emphasis on diagnostic applications. Tumors that are more commonly encountered in the skin are highlighted, but it should be noted that virtually any soft tissue malignancy can expand into the skin or metastasize to the skin. Other molecular applications for soft tissue tumors, and specifics on methods and testing strategies, including practical points, are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [127]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  2. 2.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [127]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  3. 3.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [127]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  4. 4.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [127]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

References

  1. Rouhani P, Fletcher CDM, Devesa SS, Toro JR. Cutaneous soft tissue sarcoma incidence patterns in the U.S.: an analysis of 12,114 cases. Cancer. 2008;113:616–27.

    PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    PubMed  Google Scholar 

  3. Thway K, Fisher C. Histopathological diagnostic discrepancies in soft tissue tumours referred to a specialist centre. Sarcoma. 2009;2009:741975.

    PubMed Central  PubMed  Google Scholar 

  4. Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993;4: 341–5.

    CAS  PubMed  Google Scholar 

  5. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest. 2011;91:1427–33.

    CAS  PubMed  Google Scholar 

  6. Mandahl N, Heim S, Willén H, Rydholm A, Mitelman F. Supernumerary ring chromosome as the sole cytogenetic abnormality in a dermatofibrosarcoma protuberans. Cancer Genet Cytogenet. 1990;49:273–5.

    CAS  PubMed  Google Scholar 

  7. Ducimetière F, Lurkin A, Ranchère-Vince D, Decouvelaere A-V, Péoc’h M, Istier L, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6:e20294.

    PubMed Central  PubMed  Google Scholar 

  8. Manner J, Radlwimmer B, Hohenberger P, Mössinger K, Küffer S, Sauer C, et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol. 2010;176:34–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Arrigoni G, Doglioni C. Atypical lipomatous tumor: molecular characterization. Curr Opin Oncol. 2004;16:355–8.

    PubMed  Google Scholar 

  10. Yang J, Zhang W. New molecular insights into osteosarcoma targeted therapy. Curr Opin Oncol. 2013;25:398–406.

    CAS  PubMed  Google Scholar 

  11. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med. 2001;344:1052–6.

    CAS  PubMed  Google Scholar 

  13. Ashman LK, Griffith R. Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs. 2013;22(1):103–15.

    CAS  PubMed  Google Scholar 

  14. Demicco EG. Sarcoma diagnosis in the age of molecular pathology. Adv Anat Pathol. 2013;20: 264–74.

    CAS  PubMed  Google Scholar 

  15. Agaram NP, Wong GC, Guo T, Maki RG, Singer S, Dematteo RP, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2008;47:853–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Demicco EG, Torres KE, Ghadimi MP, Colombo C, Bolshakov S, Hoffman A, et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol. 2012;25:212–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Enzinger FM. Angiomatoid malignant fibrous histiocytoma: a distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer. 1979;44:2147–57.

    CAS  PubMed  Google Scholar 

  18. Costa MJ, Weiss SW. Angiomatoid malignant fibrous histiocytoma. A follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol. 1990;14:1126–32.

    CAS  PubMed  Google Scholar 

  19. Anonescu C, Rossi S. Angiomatoid fibrous histiocytoma. In: Fletcher C, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 204–5.

    Google Scholar 

  20. Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    CAS  PubMed  Google Scholar 

  21. Waters BL, Panagopoulos I, Allen EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet. 2000;121:109–16.

    CAS  PubMed  Google Scholar 

  22. Tanas MR, Rubin BP, Montgomery EA, Turner SL, Cook JR, Tubbs RR, et al. Utility of FISH in the diagnosis of angiomatoid fibrous histiocytoma: a series of 18 cases. Mod Pathol. 2010;23:93–7.

    CAS  PubMed  Google Scholar 

  23. Hallor KH, Mertens F, Jin Y, Meis-Kindblom JM, Kindblom L-G, Behrendtz M, et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2005;44:97–102.

    CAS  PubMed  Google Scholar 

  24. Torres KE, Ravi V, Kin K, Yi M, Guadagnolo BA, May CD, et al. Long-term outcomes in patients with radiation-associated angiosarcomas of the breast following surgery and radiotherapy for breast cancer. Ann Surg Oncol. 2013;20:1267–74.

    PubMed  Google Scholar 

  25. Fodor J, Orosz Z, Szabó E, Sulyok Z, Polgár C, Zaka Z, et al. Angiosarcoma after conservation treatment for breast carcinoma: our experience and a review of the literature. J Am Acad Dermatol. 2006;54: 499–504.

    PubMed  Google Scholar 

  26. Weiss SW, Goldblum JR, editors. Malignant vascular tumors. Enzinger Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008. p. 703–32.

    Google Scholar 

  27. Fisher C. Unusual myoid, perivascular, and postradiation lesions, with emphasis on atypical vascular lesion, postradiation cutaneous angiosarcoma, myoepithelial tumors, myopericytoma, and perivascular epithelioid cell tumor. Semin Diagn Pathol. 2013;30:73–84.

    PubMed  Google Scholar 

  28. Barrios C, Castresana JS, Ruiz J, Kreicbergs A. Amplification of the c-myc proto-oncogene in soft tissue sarcomas. Oncology. 1994;51:13–7.

    CAS  PubMed  Google Scholar 

  29. Käcker C, Marx A, Mössinger K, Svehla F, Schneider U, Hogendoorn PCW, et al. High frequency of MYC gene amplification is a common feature of radiation-induced sarcomas. Further results from EORTC STBSG TL 01/01. Genes Chromosomes Cancer. 2013;52:93–8.

    PubMed  Google Scholar 

  30. Enzinger FM. Clear-cell sarcoma of tendons and aponeuroses. An analysis of 21 cases. Cancer. 1965;18:1163–74.

    CAS  PubMed  Google Scholar 

  31. Hoffman GJ, Carter D. Clear cell sarcoma of tendons and aponeuroses with melanin. Arch Pathol. 1973;95:22–5.

    CAS  PubMed  Google Scholar 

  32. Hantschke M, Mentzel T, Rütten A, Palmedo G, Calonje E, Lazar AJ, et al. Cutaneous clear cell sarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 12 cases emphasizing its distinction from dermal melanoma. Am J Surg Pathol. 2010;34:216–22.

    PubMed  Google Scholar 

  33. Anonescu C. Clear cell sarcoma of soft tissue. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 221–2.

    Google Scholar 

  34. Reeves BR, Fletcher CD, Gusterson BA. Translocation t(12;22)(q13;q13) is a nonrandom rearrangement in clear cell sarcoma. Cancer Genet Cytogenet. 1992;64:101–3.

    CAS  PubMed  Google Scholar 

  35. Patel RM, Downs-Kelly E, Weiss SW, Folpe AL, Tubbs RR, Tuthill RJ, et al. Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma. Mod Pathol. 2005;18:1585–90.

    CAS  PubMed  Google Scholar 

  36. Coindre J-M, Hostein I, Terrier P, Bouvier-Labit C, Collin F, Michels J-J, et al. Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer. 2006;107:1055–64.

    CAS  PubMed  Google Scholar 

  37. Hisaoka M, Ishida T, Kuo T-T, Matsuyama A, Imamura T, Nishida K, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    PubMed  Google Scholar 

  38. Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    CAS  PubMed  Google Scholar 

  39. Davis IJ, Kim JJ, Ozsolak F, Widlund HR, Rozenblatt-Rosen O, Granter SR, et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell. 2006;9:473–84.

    CAS  PubMed  Google Scholar 

  40. McGill GG, Haq R, Nishimura EK, Fisher DE. c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem. 2006;281:10365–73.

    CAS  PubMed  Google Scholar 

  41. Langezaal SM, Graadt van Roggen JF, Cleton-Jansen AM, Baelde JJ, Hogendoorn PC. Malignant melanoma is genetically distinct from clear cell sarcoma of tendons and aponeurosis (malignant melanoma of soft parts). Br J Cancer. 2001;84:535–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Negri T, Brich S, Conca E, Bozzi F, Orsenigo M, Stacchiotti S, et al. Receptor tyrosine kinase pathway analysis sheds light on similarities between clear-cell sarcoma and metastatic melanoma. Genes Chromosomes Cancer. 2012;51:111–26.

    CAS  PubMed  Google Scholar 

  43. Darier J, Ferrand M. Dermatofibromas progressifs et recidivants ou fibrosarcomes de la peau. Ann Dermatol Syph. 1924;5:545.

    Google Scholar 

  44. Shmookler BM, Enzinger FM, Weiss SW. Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer. 1989;64:2154–61.

    CAS  PubMed  Google Scholar 

  45. Coindre J-M, Pedeutour F. Giant cell fibroblastoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 75–6.

    Google Scholar 

  46. Mentzel T, Pedeutour F, Lazar AJF, Coindre J-M. Dermatofibrosarcoma protuberans. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 77–9.

    Google Scholar 

  47. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet. 2003;140:1–12.

    CAS  PubMed  Google Scholar 

  48. Giacchero D, Maire G, Nuin PAS, Berthier F, Ebran N, Carlotti A, et al. No correlation between the molecular subtype of COL1A1-PDGFB fusion gene and the clinico-histopathological features of dermatofibrosarcoma protuberans. J Invest Dermatol. 2010;130:904–7.

    CAS  PubMed  Google Scholar 

  49. Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJF, et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization. Hum Pathol. 2008;39:184–93.

    CAS  PubMed  Google Scholar 

  50. Salgado R, Llombart B, M Pujol R, Fernández-Serra A, Sanmartín O, Toll A, et al. Molecular diagnosis of dermatofibrosarcoma protuberans: a comparison between reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization methodologies. Genes Chromosomes Cancer. 2011;50:510–7.

    CAS  PubMed  Google Scholar 

  51. Shimizu A, O’Brien KP, Sjöblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type Ialpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59:3719–23.

    CAS  PubMed  Google Scholar 

  52. Resnik KS, Kantor GR, Spielvogel RL, Ryan E. Cutaneous epithelioid hemangioendothelioma without systemic involvement. Am J Dermatopathol. 1993;15:272–6.

    CAS  PubMed  Google Scholar 

  53. Clarke LE, Lee R, Militello G, Elenitsas R, Junkins-Hopkins J. Cutaneous epithelioid hemangioendothelioma. J Cutan Pathol. 2008;35:236–40.

    PubMed  Google Scholar 

  54. Weiss SW, Antonescu CR, Bridge JA, Deyrup A. Epithelioid hemangioendothelioma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 155–6.

    Google Scholar 

  55. Mendlick MR, Nelson M, Pickering D, Johansson SL, Seemayer TA, Neff JR. Translocation t(1;3)(p36.3;q25) is a nonrandom aberration in epithelioid hemangioendothelioma. Am J Surg Pathol. 2001;25:684–7.

    CAS  PubMed  Google Scholar 

  56. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med. 2011;3:98ra82.

    PubMed  Google Scholar 

  57. Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50:644–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ewing J. Diffuse endothelioma of bone. Proc N Y Pathol Soc. 1921;21:17–24.

    Google Scholar 

  59. Collier AB, Simpson L, Monteleone P. Cutaneous Ewing sarcoma: report of 2 cases and literature review of presentation, treatment, and outcome of 76 other reported cases. J Pediatr Hematol Oncol. 2011;33:631–4.

    PubMed  Google Scholar 

  60. Chow E, Merchant TE, Pappo A, Jenkins JJ, Shah AB, Kun LE. Cutaneous and subcutaneous Ewing’s sarcoma: an indolent disease. Int J Radiat Oncol Biol Phys. 2000;46:433–8.

    CAS  PubMed  Google Scholar 

  61. Machado I, Llombart B, Calabuig-Fariñas S, Llombart-Bosch A. Superficial Ewing’s sarcoma family of tumors: a clinicopathological study with differential diagnoses. J Cutan Pathol. 2011;38:636–43.

    PubMed  Google Scholar 

  62. De Alava E, Lessnick SL, Sorensen PH. Ewing sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 306–9.

    Google Scholar 

  63. Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C. Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet. 1988;32:229–38.

    CAS  PubMed  Google Scholar 

  64. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.

    CAS  PubMed  Google Scholar 

  65. Shing DC, McMullan DJ, Roberts P, Smith K, Chin S-F, Nicholson J, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res. 2003;63:4568–76.

    CAS  PubMed  Google Scholar 

  66. Le Deley M-C, Delattre O, Schaefer K-L, Burchill SA, Koehler G, Hogendoorn PCW. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol. 2010;28: 1982–8.

    PubMed  Google Scholar 

  67. Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, et al. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994;14:3 230–41.

    Google Scholar 

  68. Prieur A, Tirode F, Cohen P, Delattre O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol. 2004;24:7275–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Evans HL. Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol. 1987;88:615–9.

    CAS  PubMed  Google Scholar 

  70. Reid R, de Silva MVC, Paterson L, Ryan E, Fisher C. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes share a common t(7;16)(q34;p11) translocation. Am J Surg Pathol. 2003;27:1229–36.

    PubMed  Google Scholar 

  71. Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol. 2005;29:204–10.

    PubMed  Google Scholar 

  72. Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35:1450–62.

    PubMed  Google Scholar 

  73. Folpe AL, Hornick JL, Mertens F. Low-grade fibromyxoid sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 95–6.

    Google Scholar 

  74. Mertens F, Fletcher CDM, Antonescu CR, Coindre J-M, Colecchia M, Domanski HA, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85:408–15.

    CAS  PubMed  Google Scholar 

  75. Matsuyama A, Hisaoka M, Shimajiri S, Hayashi T, Imamura T, Ishida T, et al. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol. 2006;30:1077–84.

    PubMed  Google Scholar 

  76. Panagopoulos I, Storlazzi CT, Fletcher CDM, Fletcher JA, Nascimento A, Domanski HA, et al. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40:218–28.

    CAS  PubMed  Google Scholar 

  77. Storlazzi CT, Mertens F, Nascimento A, Isaksson M, Wejde J, Brosjo O, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet. 2003;12:2349–58.

    CAS  PubMed  Google Scholar 

  78. Laskowski J. Pathology of tumors. In: Kolodziejska H, editor. Zarys onkologii. Warsaw: PZWL; 1955. p. 91–9.

    Google Scholar 

  79. Dabska M. Parachordoma: a new clinicopathologic entity. Cancer. 1977;40:1586–92. Warsaw.

    CAS  PubMed  Google Scholar 

  80. Michal M, Miettinen M. Myoepitheliomas of the skin and soft tissues. Report of 12 cases. Virchows Arch. 1999;434:393–400.

    CAS  PubMed  Google Scholar 

  81. Hornick JL, Fletcher CDM. Cutaneous myoepithelioma: a clinicopathologic and immunohistochemical study of 14 cases. Hum Pathol. 2004;35:14–24.

    CAS  PubMed  Google Scholar 

  82. Fletcher CDM, Antonescu CR, Heim S, Hornick JL. Myoepithelioma/myoepithelial carcinoma/mixed tumor. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 208–9.

    Google Scholar 

  83. Flucke U, Palmedo G, Blankenhorn N, Slootweg PJ, Kutzner H, Mentzel T. EWSR1 gene rearrangement occurs in a subset of cutaneous myoepithelial tumors: a study of 18 cases. Mod Pathol. 2011;24:1444–50.

    CAS  PubMed  Google Scholar 

  84. Antonescu CR, Zhang L, Chang N-E, Pawel BR, Travis W, Katabi N. EWSR1–POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49:1114–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Bahrami A, Dalton JD, Krane JF, Fletcher CDM. A subset of cutaneous and soft tissue mixed tumors are genetically linked to their salivary gland counterpart. Genes Chromosomes Cancer. 2012;51:140–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bahrami A, Dalton JD, Shivakumar B, Krane JF. PLAG1 alteration in carcinoma ex pleomorphic adenoma: immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol. 2012;6:328–35.

    PubMed Central  PubMed  Google Scholar 

  87. Flucke U, Tops BBJ, Verdijk MAJ, van Cleef PJH, van Zwam PH, Slootweg PJ, et al. NR4A3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myoepithelial carcinoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma. Virchows Arch. 2012;460:621–8.

    PubMed Central  PubMed  Google Scholar 

  88. Gebre-Medhin S, Nord KH, Möller E, Mandahl N, Magnusson L, Nilsson J, et al. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol. 2012;181:1069–77.

    CAS  PubMed  Google Scholar 

  89. Konwaler BE, Keasbey L, Kaplan L. Subcutaneous pseudosarcomatous fibromatosis (fasciitis). Am J Clin Pathol. 1955;25:241–52.

    CAS  PubMed  Google Scholar 

  90. Lazar AJF, Evans HL, Oliveira AM. Nodular fasciitis. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification tumours soft tissue bone. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2013. p. 46–7.

    Google Scholar 

  91. Birdsall SH, Shipley JM, Summersgill BM, Black AJ, Jackson P, Kissin MW, et al. Cytogenetic findings in a case of nodular fasciitis of the breast. Cancer Genet Cytogenet. 1995;81:166–8.

    CAS  PubMed  Google Scholar 

  92. Weibolt VM, Buresh CJ, Roberts CA, Suijkerbuijk RF, Pickering DL, Neff JR, et al. Involvement of 3q21 in nodular fasciitis. Cancer Genet Cytogenet. 1998;106:177–9.

    CAS  PubMed  Google Scholar 

  93. Enzinger FM, Weiss SW. In: Weiss SW, Goldblum JR, editors. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008. p. 1–1258.

    Google Scholar 

  94. Gardner JM, Dandekar M, Thomas D, Goldblum JR, Weiss SW, Billings SD, et al. Cutaneous and subcutaneous pleomorphic liposarcoma: a clinicopathologic study of 29 cases with evaluation of MDM2 gene amplification in 26. Am J Surg Pathol. 2012;36:1047–51.

    PubMed  Google Scholar 

  95. Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CDM. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer. 2011;50:757–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Gadd S, Beezhold P, Jennings L, George D, Leuer K, Huang C-C, et al. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children’s Oncology Group study. J Pathol. 2012;228:119–30.

    CAS  PubMed  Google Scholar 

  97. Gisselsson D, Pålsson E, Höglund M, Domanski H, Mertens F, Pandis N, et al. Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer. 2002;33:133–40.

    CAS  PubMed  Google Scholar 

  98. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre J-M, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51:207–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kimura H, Dobashi Y, Nojima T, Nakamura H, Yamamoto N, Tsuchiya H, et al. Utility of fluorescence in situ hybridization to detect MDM2 amplification in liposarcomas and their morphological mimics. Int J Clin Exp Pathol. 2013;6:1306–16.

    PubMed Central  PubMed  Google Scholar 

  100. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.

    CAS  PubMed  Google Scholar 

  101. Mohajeri A, Tayebwa J, Collin A, Nilsson J, Magnusson L, von Steyern FV, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer. 2013;52(10):873–86.

    CAS  PubMed  Google Scholar 

  102. Nakayama R, Miura Y, Ogino J, Susa M, Watanabe I, Horiuchi K, et al. Detection of HEY1-NCOA2 fusion by fluorescence in-situ hybridization in formalin-fixed paraffin-embedded tissues as a possible diagnostic tool for mesenchymal chondrosarcoma. Pathol Int. 2012;62:823–6.

    CAS  PubMed  Google Scholar 

  103. Noguchi H, Mitsuhashi T, Seki K, Tochigi N, Tsuji M, Shimoda T, et al. Fluorescence in situ hybridization analysis of extraskeletal myxoid chondrosarcomas using EWSR1 and NR4A3 probes. Hum Pathol. 2010;41:336–42.

    CAS  PubMed  Google Scholar 

  104. Stockman DL, Miettinen M, Suster S, Spagnolo D, Dominguez-Malagon H, Hornick JL, et al. Malignant gastrointestinal neuroectodermal tumor: clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of 16 cases with a reappraisal of clear cell sarcoma-like tumors of the gastrointestinal tract. Am J Surg Pathol. 2012;36:857–68.

    PubMed  Google Scholar 

  105. Tanas MR, Rubin BP, Tubbs RR, Billings SD, Downs-Kelly E, Goldblum JR. Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms: an institutional experience. Arch Pathol Lab Med. 2010;134:1797–803.

    PubMed  Google Scholar 

  106. Thway K, Nicholson AG, Lawson K, Gonzalez D, Rice A, Balzer B, et al. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol. 2011;35:1722–32.

    PubMed  Google Scholar 

  107. Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD, et al. Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res. 2012;22:259–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. Soft tissue sarcoma. AJCC cancer staging man. 7th ed. New York/Dordrecht/Heidelberg/London: Springer; 2011. p. 293–8.

    Google Scholar 

  109. Schleiermacher G, Peter M, Oberlin O, Philip T, Rubie H, Mechinaud F, et al. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized ewing tumor. J Clin Oncol. 2003;21:85–91.

    PubMed  Google Scholar 

  110. Gallego S, Llort A, Roma J, Sabado C, Gros L, de Toledo JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol. 2006;132:356–62.

    CAS  PubMed  Google Scholar 

  111. Van Doorninck JA, Ji L, Schaub B, Shimada H, Wing MR, Krailo MD, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2010;28:1989–94.

    PubMed Central  PubMed  Google Scholar 

  112. Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62:135–40.

    CAS  PubMed  Google Scholar 

  113. Xu J, Chen Y, Olopade OI. MYC and breast cancer. Genes Cancer. 2010;1:629–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Gerami P, Jewell SS, Pouryazdanparast P, Wayne JD, Haghighat Z, Busam KJ. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13:352–8. Elsevier Inc.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Lee SE, Kim YJ, Kwon MJ, Choi DI, Lee J, Cho J. High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma. Histol Histopathol. 2014;29(1):127–38.

    CAS  PubMed  Google Scholar 

  116. Kantarjian HM, Talpaz M. Imatinib mesylate: clinical results in Philadelphia chromosome-positive leukemias. Semin Oncol. 2001;28:9–18.

    CAS  PubMed  Google Scholar 

  117. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    CAS  PubMed  Google Scholar 

  119. Llombart B, Serra-Guillén C, Monteagudo C, López Guerrero JA, Sanmartín O. Dermatofibrosarcoma protuberans: a comprehensive review and update on diagnosis and management. Semin Diagn Pathol. 2013;30:13–28.

    PubMed  Google Scholar 

  120. Rutkowski P, Wozniak A, Switaj T. Advances in molecular characterization and targeted therapy in dermatofibrosarcoma protuberans. Sarcoma. 2011;2011:959132.

    PubMed Central  PubMed  Google Scholar 

  121. McArthur GA, Demetri GD, van Oosterom A, Heinrich MC, Debiec-Rychter M, Corless CL, et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23:866–73.

    CAS  PubMed  Google Scholar 

  122. Demicco EG, Maki RG, Lev DC, Lazar AJ. New therapeutic targets in soft tissue sarcoma. Adv Anat Pathol. 2012;19:170–80.

    PubMed Central  PubMed  Google Scholar 

  123. Zhang Y-X, van Oosterwijk JG, Sicinska E, Moss S, Remillard SP, van Wezel T, et al. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res. 2013;19:3796–807.

    CAS  PubMed  Google Scholar 

  124. Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J Hematol Oncol. 2013;6:27.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Ryan CW, Desai J. The past, present, and future of cytotoxic chemotherapy and pathway-directed targeted agents for soft tissue sarcoma. Am Soc Clin Oncol Educ Book. 2013;2013:386–93.

    Google Scholar 

  126. Wagner AJ, Goldberg JM, Dubois SG, Choy E, Rosen L, Pappo A, et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. Cancer. 2012;118:5894–902.

    CAS  PubMed  Google Scholar 

  127. Hollmann PA, editor. Current procedural terminology, CPT 2014, Professional Edition. 4th ed. Chicago: American Medical Association; 2013. p. 433–516.

    Google Scholar 

  128. Robinson DR, Wu Y-M, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung Y-S, et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45:180–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Cessna MH, Zhou H, Sanger WG, Perkins SL, Tripp S, Pickering D, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15:931–8.

    PubMed  Google Scholar 

  130. Fernandez AP, Sun Y, Tubbs RR, Goldblum JR, Billings SD. FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol. 2012;39:234–42.

    PubMed  Google Scholar 

  131. Mentzel T, Schildhaus HU, Palmedo G, Büttner R, Kutzner H. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis o. Mod Pathol. 2012;25:75–85.

    CAS  PubMed  Google Scholar 

  132. Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV, et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 2006;103:4534–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Chmielecki J, Crago AM, Rosenberg M, O’Connor R, Walker SR, Ambrogio L, et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45:131–2.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hosler, G.A., Murphy, K.M. (2014). Tumors of the Soft Tissue: Using Molecular Tools to Aid in the Diagnosis of Soft Tissue Tumors and the Management of the Sarcoma Patient. In: Molecular Diagnostics for Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54066-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54066-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54065-3

  • Online ISBN: 978-3-642-54066-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics