Skip to main content

Melanoma. Part I. Risk Assessment, Diagnosis, and Prognosis: Using Molecular Tools to Diagnose Melanoma, Predict Its Behavior, and Evaluate for Inheritable Forms

  • Chapter
  • First Online:
Book cover Molecular Diagnostics for Dermatology

Abstract

For the past 200 years, the diagnosis of melanoma relied upon standard clinical and histologic criteria. Early diagnosis with surgical intervention had been the only chance for cure. Recent deciphering of melanoma’s genetic underpinnings and signaling pathways, however, has revolutionized the complete management of the melanoma patient. Assessment of patient risk is no longer limited to ultraviolet exposure but includes evaluation of the patient’s genome. Diagnosis is no longer limited to clinical and microscopic inspection of the tumor, but includes assessment of the tumors genome for chromosomal abnormalities and signaling molecule mutations. Prognosis is no longer linked only to tumor size but can be impacted by the amplification of tumor oncogenes and/or the molecular detection of micrometastases. And, finally, treatment is no longer limited to “excise and pray” tactics but can be tailored to the individual, reversing the action of the very mutations that led to melanomagenesis. With these new molecular tools, it is now clear that melanoma is not a single tumor but a complex array of tumors, each with a unique molecular profile, similar only in their genesis within a host melanocyte. This chapter begins the discussion on melanoma, exploring the role of molecular diagnostics in assessing patient risk (i.e., hereditary melanoma), diagnosis, prognosis, and reclassification schemes, with the focus on practical, or current, applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [97]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  2. 2.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [97]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

  3. 3.

    The CPT codes are from 2014 listings and are provided for reference only, not as a billing guide [97]. Recommended codes may vary depending on molecular targets and testing methods. These are updated annually. A reference for physician fee schedules can be found at www.cms.gov.

References

  1. Rebecca VW, Sondak VK, Smalley KSM. A brief history of melanoma: from mummies to mutations. Melanoma Res. 2012;22:114–22.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Norris W. Case of fungoid disease. Edinb Med Surg J. 1820;16:562–5.

    Google Scholar 

  3. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  4. Tucker MA. Melanoma epidemiology. Hematol Oncol Clin North Am. 2009;23:383–95, vii.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Udayakumar D, Tsao H. Melanoma genetics: an update on risk-associated genes. Hematol Oncol Clin North Am. 2009;23:415–29, vii.

    Article  PubMed  Google Scholar 

  6. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94:894–903.

    Article  CAS  PubMed  Google Scholar 

  7. Tsao H, Chin L, Garraway LA, Fisher DE. Melanoma: from mutations to medicine. Genes Dev. 2012;26:1131–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril M-F, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66:9818–28.

    Article  CAS  PubMed  Google Scholar 

  9. Clark WH, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ. Origin of familial malignant melanomas from heritable melanocytic lesions. “The B-K mole syndrome”. Arch Dermatol. 1978;114:732–8.

    Article  PubMed  Google Scholar 

  10. Lynch HT, Frichot BC, Lynch JF. Familial atypical multiple mole-melanoma syndrome. J Med Genet. 1978;15:352–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet. 2001;69:765–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Leachman SA, Carucci J, Kohlmann W, Banks KC, Asgari MM, Bergman W, et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009;61:677.e1–14.

    Article  Google Scholar 

  13. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA. Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst. 2000;92:1006–10.

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001;117:294–300.

    Article  CAS  PubMed  Google Scholar 

  15. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44:99–106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Parker JF, Florell SR, Alexander A, DiSario JA, Shami PJ, Leachman SA. Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol. 2003;139:1019–25.

    Article  CAS  PubMed  Google Scholar 

  18. Berwick M, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol Biomarkers Prev. 2006;15:1520–5.

    Article  CAS  PubMed  Google Scholar 

  19. Orlow I, Begg CB, Cotignola J, Roy P, Hummer AJ, Clas BA, et al. CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J Invest Dermatol. 2007;127:1234–43.

    Article  CAS  PubMed  Google Scholar 

  20. GenoMel. Genetic counselling and testing for hereditary melanoma [Internet]. 2014. Available from: http://www.genomel.org/genetic_counselling.

  21. Weedon D, editor. Lentigines, nevi, and melanomas. Weedon’s skin pathology. 3rd ed. New York: Churchill Livingstone Elsevier; 2010. p. 709–56.

    Google Scholar 

  22. Hosler GA, Moresi JM, Barrett TL. Nevi with site-related atypia: a review of melanocytic nevi with atypical histologic features based on anatomic site. J Cutan Pathol. 2008;35:889–98.

    Article  PubMed  Google Scholar 

  23. Brochez L, Verhaeghe E, Grosshans E, Haneke E, Piérard G, Ruiter D, et al. Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J Pathol. 2002;196:459–66.

    Article  PubMed  Google Scholar 

  24. Lodha S, Saggar S, Celebi JT, Silvers DN. Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol. 2008;35:349–52.

    Article  PubMed  Google Scholar 

  25. Prieto VG, Shea CR. Immunohistochemistry of melanocytic proliferations. Arch Pathol Lab Med. 2011;135:853–9.

    PubMed  Google Scholar 

  26. Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet. 2003;34:369–76.

    Article  CAS  PubMed  Google Scholar 

  27. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kallioniemi A, Visakorpi T, Karhu R, Pinkel D, Kallioniemi O. Gene copy number analysis by fluorescence in situ hybridization and comparative genomic hybridization. Methods. 1996;9:113–21.

    Article  CAS  PubMed  Google Scholar 

  29. Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV, et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A. 2006;103:4534–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bastian BC, LeBoit PE, Hamm H, Bröcker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58:2170–5.

    CAS  PubMed  Google Scholar 

  31. Bastian BC, Olshen AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol. 2003;163:1765–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Bastian BC, Wesselmann U, Pinkel D, Leboit PE. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113:1065–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ali L, Helm T, Cheney R, Conroy J, Sait S, Guitart J, et al. Correlating array comparative genomic hybridization findings with histology and outcome in spitzoid melanocytic neoplasms. Int J Clin Exp Pathol. 2010;3:593–9.

    PubMed Central  PubMed  Google Scholar 

  35. Maize JC, McCalmont TH, Carlson JA, Busam KJ, Kutzner H, Bastian BC. Genomic analysis of blue nevi and related dermal melanocytic proliferations. Am J Surg Pathol. 2005;29:1214–20.

    Article  PubMed  Google Scholar 

  36. Bastian BC, Xiong J, Frieden IJ, Williams ML, Chou P, Busam K, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161:1163–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–56.

    Article  PubMed  Google Scholar 

  38. Kerl K, Palmedo G, Wiesner T, Mentzel T, Rütten A, Schärer L, et al. A proposal for improving multicolor FISH sensitivity in the diagnosis of malignant melanoma using new combined criteria. Am J Dermatopathol. 2012;34:580–5.

    Article  PubMed  Google Scholar 

  39. Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36:808–17.

    Article  PubMed  Google Scholar 

  40. Gaiser T, Kutzner H, Palmedo G, Siegelin MD, Wiesner T, Bruckner T, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23:413–9.

    Article  CAS  PubMed  Google Scholar 

  41. Vergier B, Prochazkova-Carlotti M, de la Fouchardière A, Cerroni L, Massi D, De Giorgi V, et al. Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod Pathol. 2011;24:613–23.

    Article  CAS  PubMed  Google Scholar 

  42. Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology. 2009;41:383–7.

    Article  CAS  PubMed  Google Scholar 

  43. Gammon B, Beilfuss B, Guitart J, Gerami P. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Am J Surg Pathol. 2012;36:81–8.

    Article  PubMed  Google Scholar 

  44. Gerami P, Mafee M, Lurtsbarapa T, Guitart J, Haghighat Z, Newman M. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch Dermatol. 2010;146:273–8.

    Article  PubMed  Google Scholar 

  45. Gerami P, Beilfuss B, Haghighat Z, Fang Y, Jhanwar S, Busam KJ. Fluorescence in situ hybridization as an ancillary method for the distinction of desmoplastic melanomas from sclerosing melanocytic nevi. J Cutan Pathol. 2011;38:329–34.

    Article  PubMed  Google Scholar 

  46. Isaac AK, Lertsburapa T, Pathria Mundi J, Martini M, Guitart J, Gerami P. Polyploidy in spitz nevi: a not uncommon karyotypic abnormality identifiable by fluorescence in situ hybridization. Am J Dermatopathol. 2010;32:144–8.

    Article  PubMed  Google Scholar 

  47. Zembowicz A, Yang S-E, Kafanas A, Lyle SR. Correlation between histologic assessment and fluorescence in situ hybridization using MelanoSITE in evaluation of histologically ambiguous melanocytic lesions. Arch Pathol Lab Med. 2012;136(12):1571–9.

    Article  CAS  PubMed  Google Scholar 

  48. Tran TP, Titus-Ernstoff L, Perry AE, Ernstoff MS, Newsham IF. Alteration of chromosome 9p21 and/or p16 in benign and dysplastic nevi suggests a role in early melanoma progression (United States). Cancer Causes Control. 2002;13:675–82.

    Article  PubMed  Google Scholar 

  49. Sini MC, Manca A, Cossu A, Budroni M, Botti G, Ascierto PA, et al. Molecular alterations at chromosome 9p21 in melanocytic naevi and melanoma. Br J Dermatol. 2008;158:243–50.

    CAS  PubMed  Google Scholar 

  50. Busam KJ, Fang Y, Jhanwar SC, Pulitzer MP, Marr B, Abramson DH. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37:196–203.

    Article  PubMed  Google Scholar 

  51. Pouryazdanparast P, Newman M, Mafee M, Haghighat Z, Guitart J, Gerami P. Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33:1396–400.

    Article  PubMed  Google Scholar 

  52. Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33:1783–8.

    Article  PubMed  Google Scholar 

  53. Gerami P, Barnhill RL, Beilfuss BA, LeBoit P, Schneider P, Guitart J. Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol. 2010;34:816–21.

    Article  PubMed  Google Scholar 

  54. Boi S, Leonardi E, Fasanella S, Cantaloni C, Micciolo R. The four-color FISH probe in the diagnosis of melanocytic lesions. J Eur Acad Dermatol Venereol. 2010;24:1235–6.

    Article  CAS  PubMed  Google Scholar 

  55. Zimmermann AK, Hirschmann A, Pfeiffer D, Paredes BE, Diebold J. FISH analysis for diagnostic evaluation of challenging melanocytic lesions. Histol Histopathol. 2010;25:1139–47.

    CAS  PubMed  Google Scholar 

  56. Gerami P. Discussion on relative significance of specific chromosomal abnormalities in specific diagnostic settings (personal communication). 2013.

    Google Scholar 

  57. North JP, Kageshita T, Pinkel D, LeBoit PE, Bastian BC. Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. J Invest Dermatol. 2008;128:2024–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Dalton SR, Gerami P, Kolaitis NA, Charzan S, Werling R, LeBoit PE, et al. Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol. 2010;34:231–7.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22:989–95.

    Article  CAS  PubMed  Google Scholar 

  60. Ryan D, Rafferty M, Hegarty S, O’Leary P, Faller W, Gremel G, et al. Topoisomerase I amplification in melanoma is associated with more advanced tumours and poor prognosis. Pigment Cell Melanoma Res. 2010;23:542–53.

    Article  CAS  PubMed  Google Scholar 

  61. Gerami P, Jewell SS, Pouryazdanparast P, Wayne JD, Haghighat Z, Busam KJ, et al. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13:352–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene. 2010;29:5545–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol. 2004;5:875–85.

    Article  CAS  PubMed  Google Scholar 

  64. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33:19–20.

    Article  CAS  PubMed  Google Scholar 

  65. Saroufim M, Habib R, Karram S, Youssef Massad C, Taraif S, Loya A, et al. BRAF analysis on a spectrum of melanocytic neoplasms: an epidemiological study across differing uv regions. Am J Dermatopathol. 2013;36(1):68–73.

    Article  Google Scholar 

  66. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  CAS  PubMed  Google Scholar 

  68. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–9.

    CAS  PubMed  Google Scholar 

  69. Indsto JO, Kumar S, Wang L, Crotty KA, Arbuckle SM, Mann GJ. Low prevalence of RAS-RAF-activating mutations in Spitz melanocytic nevi compared with other melanocytic lesions. J Cutan Pathol. 2007;34:448–55.

    Article  PubMed  Google Scholar 

  70. Ichii-Nakato N, Takata M, Takayanagi S, Takashima S, Lin J, Murata H, et al. High frequency of BRAFV600E mutation in acquired nevi and small congenital nevi, but low frequency of mutation in medium-sized congenital nevi. J Invest Dermatol. 2006;126:2111–8.

    Article  CAS  PubMed  Google Scholar 

  71. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363:2191–9.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Dratviman-Storobinsky O, Cohen Y, Frenkel S, Pe’er J, Goldenberg-Cohen N. Lack of oncogenic GNAQ mutations in melanocytic lesions of the conjunctiva as compared to uveal melanoma. Invest Ophthalmol Vis Sci. 2010;51:6180–2.

    Article  PubMed  Google Scholar 

  73. Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43:1018–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Wiesner T, Murali R, Fried I, Cerroni L, Busam K, Kutzner H, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36:818–30.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Balch CM, Gershenwald JE, Soong S-J, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti III A, editors. Melanoma of the skin. AJCC cancer staging man. 7th ed. New York: Springer; 2011. p. 327–46.

    Google Scholar 

  77. Yu LL, Flotte TJ, Tanabe KK, Gadd MA, Cosimi AB, Sober AJ, et al. Detection of microscopic melanoma metastases in sentinel lymph nodes. Cancer. 1999;86:617–27.

    Article  CAS  PubMed  Google Scholar 

  78. Prieto VG. Sentinel lymph nodes in cutaneous melanoma: handling, examination, and clinical repercussion. Arch Pathol Lab Med. 2010;134:1764–9.

    PubMed  Google Scholar 

  79. Hochberg M, Lotem M, Gimon Z, Shiloni E, Enk CD. Expression of tyrosinase, MIA and MART-1 in sentinel lymph nodes of patients with malignant melanoma. Br J Dermatol. 2002;146:244–9.

    Article  CAS  PubMed  Google Scholar 

  80. Davids V, Kidson SH, Hanekom GS. Melanoma patient staging: histopathological versus molecular evaluation of the sentinel node. Melanoma Res. 2003;13:313–24.

    Article  CAS  PubMed  Google Scholar 

  81. Takeuchi H, Morton DL, Kuo C, Turner RR, Elashoff D, Elashoff R, et al. Prognostic significance of molecular upstaging of paraffin-embedded sentinel lymph nodes in melanoma patients. J Clin Oncol. 2004;22:2671–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mocellin S, Hoon DSB, Pilati P, Rossi CR, Nitti D. Sentinel lymph node molecular ultrastaging in patients with melanoma: a systematic review and meta-analysis of prognosis. J Clin Oncol. 2007;25:1588–95.

    Article  PubMed  Google Scholar 

  83. Hilari JM, Mangas C, Xi L, Paradelo C, Ferrándiz C, Hughes SJ, et al. Molecular staging of pathologically negative sentinel lymph nodes from melanoma patients using multimarker, quantitative real-time rt-PCR. Ann Surg Oncol. 2009;16:177–85.

    Article  PubMed  Google Scholar 

  84. Carson KF, Wen DR, Li PX, Lana AM, Bailly C, Morton DL, et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol. 1996;20:834–40.

    Article  CAS  PubMed  Google Scholar 

  85. Itakura E, Huang R-R, Wen D-R, Cochran AJ. “Stealth” melanoma cells in histology-negative sentinel lymph nodes. Am J Surg Pathol. 2011;35:1657–65.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Soikkeli J, Lukk M, Nummela P, Virolainen S, Jahkola T, Katainen R, et al. Systematic search for the best gene expression markers for melanoma micrometastasis detection. J Pathol. 2007;213:180–9.

    Article  CAS  PubMed  Google Scholar 

  87. Taube JM, Begum S, Shi C, Eshleman JR, Westra WH. Benign nodal nevi frequently harbor the activating V600E BRAF mutation. Am J Surg Pathol. 2009;33:568–71.

    Article  PubMed  Google Scholar 

  88. Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosomes Cancer. 1997;19:22–8.

    Article  CAS  PubMed  Google Scholar 

  89. McLean IW, Saraiva VS, Burnier MN. Pathological and prognostic features of uveal melanomas. Can J Ophthalmol. 2004;39:343–50.

    PubMed  Google Scholar 

  90. Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64:7205–9.

    Article  CAS  PubMed  Google Scholar 

  91. Harbour JW, Chen R. The DecisionDx-UM gene expression profile test provides risk stratification and individualized patient care in uveal melanoma. PLoS Curr. 2013;5.

    Google Scholar 

  92. Carlson JA, Slominski A, Linette GP, Mysliborski J, Hill J, Mihm MC, et al. Malignant melanoma 2003: predisposition, diagnosis, prognosis, and staging. Am J Clin Pathol. 2003;120(Suppl):S101–27.

    PubMed  Google Scholar 

  93. Bougnoux AC, Solassol J. The contribution of proteomics to the identification of biomarkers for cutaneous malignant melanoma. Clin Biochem. 2012;46(6):518–23.

    Article  PubMed  Google Scholar 

  94. Khoja L, Lorigan P, Zhou C, Lancashire M, Booth J, Cummings J, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2012;133(6):1582–90.

    Article  PubMed  Google Scholar 

  95. Salvianti F, Pinzani P, Verderio P, Ciniselli CM, Massi D, De Giorgi V, et al. Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One. 2012;7:e49843.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Dhillon N, Wilkinson J, Rogers A, Delman K, Maetzold D, Oelschlager K, et al. Gene expression profile signature (DecisionDx-Melanoma) to predict visceral metastatic risk in patients with stage I and stage II cutaneous melanoma. Am Soc Clin Oncol Annu Meet Abstr. 2012.

    Google Scholar 

  97. American Medical Association; Hollmann PA, editor. Current procedural terminology, CPT 2014, Professional Edition. 4th ed. Chicago: American Medical Association; 2013. p. 433–516.

    Google Scholar 

  98. Clark WH, From L, Bernardino EA, Mihm MC. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29:705–27.

    PubMed  Google Scholar 

  99. Conley J, Lattes R, Orr W. Desmoplastic malignant melanoma (a rare variant of spindle cell melanoma). Cancer. 1971;28:914–36.

    Article  CAS  PubMed  Google Scholar 

  100. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  101. Swetter SM, Boldrick JC, Jung SY, Egbert BM, Harvell JD. Increasing incidence of lentigo maligna melanoma subtypes: Northern California and national trends 1990-2000. J Invest Dermatol. 2005;125:685–91.

    Article  CAS  PubMed  Google Scholar 

  102. Lee J-H, Choi J-W, Kim Y-S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164:776–84.

    Article  CAS  PubMed  Google Scholar 

  103. Davison JM, Rosenbaum E, Barrett TL, Goldenberg D, Hoque MO, Sidransky D, et al. Absence of V599E BRAF mutations in desmoplastic melanomas. Cancer. 2005;103:788–92.

    Article  CAS  PubMed  Google Scholar 

  104. Kim J, Lazar AJ, Davies MA, Homsi J, Papadopoulos NE, Hwu W-J, et al. BRAF, NRAS and KIT sequencing analysis of spindle cell melanoma. J Cutan Pathol. 2012;39:821–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hosler, G.A., Murphy, K.M. (2014). Melanoma. Part I. Risk Assessment, Diagnosis, and Prognosis: Using Molecular Tools to Diagnose Melanoma, Predict Its Behavior, and Evaluate for Inheritable Forms. In: Molecular Diagnostics for Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54066-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54066-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54065-3

  • Online ISBN: 978-3-642-54066-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics