Skip to main content

Molecular Methods

  • Chapter
  • First Online:
Molecular Diagnostics for Dermatology

Abstract

The fields of molecular biology and nucleic acid chemistry have advanced rapidly over the last several decades, resulting in a wide variety of molecular methods now available for the detection of clinically relevant genetic variants. While keeping pace with the constant evolution of methodologies is a challenge, it is important to maintain the perspective that all molecular methods are based on relatively few key principles. Understanding these basic principles is essential for appropriate ordering of molecular tests, accurate analytical and clinical interpretation of test results, and clear communication of results to patients. As an example, there are at least five methods currently used for clinical BRAF testing. All are reasonable methodological approaches, but each has unique strengths and weakness that should be considered in the context of an individual test result.

This chapter provides an overview of molecular methods. Key concepts are discussed that will give the reader a foundation for evaluating molecular assays and interpreting their results critically. Practical considerations such as sample composition, pre-analytical variables, costs, and reimbursement are also discussed. Assays used in the management of the dermatology patient are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.

    Article  CAS  PubMed  Google Scholar 

  2. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  4. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74(2):560–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Smith LM, Fung S, Hunkapiller MW, Hunkapiller TJ, Hood LE. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Res. 1985;13(7):2399–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321(6071):674–9.

    Article  CAS  PubMed  Google Scholar 

  7. Boyd SD. Diagnostic applications of high-throughput DNA sequencing. Annu Rev Pathol. 2013;8:381–410.

    Article  CAS  PubMed  Google Scholar 

  8. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.

    Article  CAS  PubMed  Google Scholar 

  9. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  PubMed  Google Scholar 

  10. Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262(4):56–61. 64–5.

    Article  CAS  PubMed  Google Scholar 

  11. BRAF-A Survey Participant Summary. Northfield: College of American Pathologists; 2012.p. 2.

    Google Scholar 

  12. Hecht JR, Mitchell E, Neubauer MA, Burris HA, Swanson P, Lopez T, et al. Lack of correlation between epidermal growth factor receptor status and response to panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res. 2010;16(7):2205–13.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett JC, Frigault MM, Hollingsworth S, Miller GA, Modur V. Are companion diagnostics useful? Clin Chem. 2013;59(1):198–201.

    Article  CAS  PubMed  Google Scholar 

  14. Shaffer LG, McGowan-Jordan J, Schmid M, editors. An international system for human cytogenetic nomenclature. Basel: S. Karger; 2013.

    Google Scholar 

  15. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  16. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RCT, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  17. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood. 2003;102(12):3871–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shearer BM, Thorland EC, Gonzales PR, Ketterling RP. Evaluation of a commercially available focused aCGH platform for the detection of constitutional chromosome anomalies. Am J Med Genet A. 2007;143A(20):2357–70.

    Article  PubMed  Google Scholar 

  19. Chan P, Anguiano A, Hensley K, Keo N, Liu Y, Sarno R, et al. Clinical array comparative genomic hybridization: a new paradigm. Expert Opin Med Diagn. 2008;2(4):449–59.

    Article  CAS  PubMed  Google Scholar 

  20. Sargent R, Jones D, Abruzzo LV, Yao H, Bonderover J, Cisneros M, et al. Customized oligonucleotide array-based comparative genomic hybridization as a clinical assay for genomic profiling of chronic lymphocytic leukemia. J Mol Diagn. 2009;11(1):25–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Harada S, Henderson LB, Eshleman JR, Gocke CD, Burger P, Griffin CA, et al. Genomic changes in gliomas detected using single nucleotide polymorphism array in formalin-fixed, paraffin-embedded tissue: superior results compared with microsatellite analysis. J Mol Diagn. 2011;13(5):541–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    CAS  PubMed  Google Scholar 

  23. Murphy KM, Zhang S, Geiger T, Hafez MJ, Bacher J, Berg KD, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn. 2006;8(3):305–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    Article  PubMed  Google Scholar 

  25. Van Krieken JHJM, Langerak AW, Macintyre EA, Kneba M, Hodges E, Sanz RG, et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):201–6.

    Article  PubMed  Google Scholar 

  26. Groenen PJTA, Langerak AW, Van Dongen JJM, Van Krieken JHJM. Pitfalls in TCR gene clonality testing: teaching cases. J Hematop. 2008;1(2):97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nann-Rütti S, Tzankov A, Cantoni N, Halter J, Heim D, Tsakiris D, et al. Large granular lymphocyte expansion after allogeneic hematopoietic stem cell transplant is associated with a cytomegalovirus reactivation and shows an indolent outcome. Biol Blood Marrow Transplant. 2012;18(11):1765–70.

    Article  PubMed  Google Scholar 

  28. Than S, Kharbanda M, Chitnis V, Bakshi S, Gregersen PK, Pahwa S. Clonal dominance patterns of CD8 T cells in relation to disease progression in HIV-infected children. J Immunol. 1999;162(6):3680–6.

    CAS  PubMed  Google Scholar 

  29. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y). 1992;10(4):413–7.

    Article  CAS  Google Scholar 

  30. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–30.

    Article  CAS  Google Scholar 

  31. Halait H, Demartin K, Shah S, Soviero S, Langland R, Cheng S, et al. Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol. 2012;21(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lade-Keller J, Rømer KM, Guldberg P, Riber-Hansen R, Hansen LL, Steiniche T, et al. Evaluation of BRAF mutation testing methodologies in formalin-fixed, paraffin-embedded cutaneous melanomas. J Mol Diagn. 2013;15(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  33. Ronaghi M, Uhlén M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363. 365.

    Article  CAS  PubMed  Google Scholar 

  34. Ronaghi M. Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem. 2000;286(2):282–8.

    Article  CAS  PubMed  Google Scholar 

  35. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  36. Nyrén P. The history of pyrosequencing. Methods Mol Biol. 2007;373:1–14.

    Article  PubMed  Google Scholar 

  37. Ku C-S, Wu M, Cooper DN, Naidoo N, Pawitan Y, Pang B, et al. Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis. Expert Rev Mol Diagn. 2012;12(2):159–73.

    Article  CAS  PubMed  Google Scholar 

  38. Mardis ER. The $1,000 genome, the $100,000 analysis? Genome Med. 2010;2(11):84.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hosler, G.A., Murphy, K.M. (2014). Molecular Methods. In: Molecular Diagnostics for Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54066-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54066-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54065-3

  • Online ISBN: 978-3-642-54066-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics