Skip to main content

Emerging Molecular Applications and Summary

  • Chapter
  • First Online:
Molecular Diagnostics for Dermatology

Abstract

Molecular diagnostics has already transformed three areas of clinical medicine—genetics, oncology, and infectious disease testing—with dermatologic applications in all three areas. The field of molecular diagnostics is rapidly changing, with the ongoing development of numerous new technologies and the frequent identification of novel, clinically relevant genetic targets. One of the biggest challenges for the field is the translation of research findings into clinical practice. While new diagnostic and prognostic molecular tests will continue to increase and evolve, perhaps the greatest opportunity for molecular diagnostics relates to its potential use for tailoring treatment to an individual patient through theranostic and pharmacogenetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhomen N, Marais R. BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am. 2009;23:529–45, ix.

    Article  PubMed  Google Scholar 

  2. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.

    Article  CAS  PubMed  Google Scholar 

  5. Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31:482–9.

    Article  CAS  PubMed  Google Scholar 

  6. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29:2904–9.

    Article  CAS  PubMed  Google Scholar 

  7. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically Sun-damaged skin. J Clin Oncol. 2013;31:3182–90.

    Article  CAS  PubMed  Google Scholar 

  8. Tran A, Tawbi HA. A potential role for nilotinib in KIT-mutated melanoma. Expert Opin Investig Drugs. 2012;21:861–9.

    Article  CAS  PubMed  Google Scholar 

  9. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24:4340–6.

    Article  CAS  PubMed  Google Scholar 

  10. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  11. Wu J-Y, Wu S-G, Yang C-H, Gow C-H, Chang Y-L, Yu C-J, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14:4877–82.

    Article  CAS  PubMed  Google Scholar 

  12. Sahm F, Capper D, Preusser M, Meyer J, Stenzinger A, Lasitschka F, et al. BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood. 2012;120:e28–34.

    Article  CAS  PubMed  Google Scholar 

  13. Rothenberg SM, McFadden DG, Palmer E, Daniels GH, Wirth LJ. Re-differentiation of radioiodine-refractory BRAF V600E-mutant thyroid carcinoma with dabrafenib: a pilot study. J Clin Oncol. 2013;31.

    Google Scholar 

  14. Planchard D, et al. Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation-positive non-small cell lung cancer patients. ASCO Abstract 8009. 2013.

    Google Scholar 

  15. Hecht JR, Mitchell E, Neubauer MA, Burris HA, Swanson P, Lopez T, et al. Lack of correlation between epidermal growth factor receptor status and response to Panitumumab monotherapy in metastatic colorectal cancer. Clin Cancer Res. 2010;16:2205–13.

    Article  CAS  PubMed  Google Scholar 

  16. O’Malley PA. Preventing and reporting adverse drug events: pharmacovigilance for the clinical nurse specialist. Clin Nurse Spec. 2012;26:136–7.

    Article  PubMed  Google Scholar 

  17. O’Connor SK, Ferreri SP, Michaels NM, Chater RW, Viera AJ, Faruki H, et al. Making pharmacogenetic testing a reality in a community pharmacy. J Am Pharm Assoc. 2012;52:e259–65.

    Article  Google Scholar 

  18. Sim SC, Ingelman-Sundberg M. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database. Methods Mol Biol. 2013;987:251–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee K-H, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.

    Article  CAS  PubMed  Google Scholar 

  20. Desmarais JE, Looper KJ. Interactions between tamoxifen and antidepressants via cytochrome P450 2D6. J Clin Psychiatry. 2009;70:1688–97.

    Article  CAS  PubMed  Google Scholar 

  21. Kelly CM, Juurlink DN, Gomes T, Duong-Hua M, Pritchard KI, Austin PC, et al. Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ. 2010;340:c693.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kim IH, West CE, Kwatra SG, Feldman SR, O’Neill JL. Comparative efficacy of biologics in psoriasis: a review. Am J Clin Dermatol. 2012;13:365–74.

    Article  PubMed  Google Scholar 

  23. Sivamani RK, Goodarzi H, Garcia MS, Raychaudhuri SP, Wehrli LN, Ono Y, et al. Biologic therapies in the treatment of psoriasis: a comprehensive evidence-based basic science and clinical review and a practical guide to tuberculosis monitoring. Clin Rev Allergy Immunol. 2013;44:121–40.

    Article  CAS  PubMed  Google Scholar 

  24. JuliĂ  M, Guilabert A, Lozano F, Suarez-CasasĂşs B, Moreno N, Carrascosa JM, et al. The role of FcÎł receptor polymorphisms in the response to anti-tumor necrosis factor therapy in psoriasis: a pharmacogenetic study. JAMA Dermatol (Chicago, Ill.). 2013.

    Google Scholar 

  25. Tejasvi T, Stuart PE, Chandran V, Voorhees JJ, Gladman DD, Rahman P, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Vasilopoulos Y, Manolika M, Zafiriou E, Sarafidou T, Bagiatis V, Krüger-Krasagaki S, et al. Pharmacogenetic analysis of TNF, TNFRSF1A, and TNFRSF1B gene polymorphisms and prediction of response to anti-TNF therapy in psoriasis patients in the Greek population. Mol Diagn Ther. 2012;16:29–34.

    Article  CAS  PubMed  Google Scholar 

  27. Prieto-Pérez R, Cabaleiro T, Daudén E, Ochoa D, Román M, Abad-Santos F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics. 2013;14:1623–34.

    Article  PubMed  Google Scholar 

  28. Talamonti M, Botti E, Galluzzo M, Teoli M, Spallone G, Bavetta M, et al. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br J Dermatol. 2013;169:458–63.

    Article  CAS  PubMed  Google Scholar 

  29. Warren RB, Smith RLL, Campalani E, Eyre S, Smith CH, Barker JNWN, et al. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. J Investig Dermatol. 2008;128:1925–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sabharwal A, Waters R, Danson S, Clamp A, Lorigan P, Thatcher N, et al. Predicting the myelotoxicity of chemotherapy: the use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral blood mononuclear cells. Melanoma Res. 2011;21:502–8.

    Article  CAS  PubMed  Google Scholar 

  31. Schraml P, Von Teichman A, Mihic-Probst D, Simcock M, Ochsenbein A, Dummer R, et al. Predictive value of the MGMT promoter methylation status in metastatic melanoma patients receiving first-line temozolomide plus bevacizumab in the trial SAKK 50/07. Oncol Rep. 2012;28:654–8.

    CAS  PubMed  Google Scholar 

  32. Hassel JC, Sucker A, Edler L, Kurzen H, Moll I, Stresemann C, et al. MGMT gene promoter methylation correlates with tolerance of temozolomide treatment in melanoma but not with clinical outcome. Br J Cancer. 2010;103:820–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Brody JR, Hucl T, Gallmeier E, Winter JM, Kern SE, Murphy KM. Genomic copy number changes affecting the thymidylate synthase (TYMS) gene in cancer: a model for patient classification to aid fluoropyrimidine therapy. Cancer Res. 2006;66:9369–73.

    Article  CAS  PubMed  Google Scholar 

  34. Chen P, Lin J-J, Lu C-S, Ong C-T, Hsieh PF, Yang C-C, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364:1126–33.

    Article  CAS  PubMed  Google Scholar 

  35. Tegretol prescribing information. East Hanover: Novartis Pharmaceuticals Corporation, 07936; 2013.

    Google Scholar 

  36. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364:1134–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hosler, G.A., Murphy, K.M. (2014). Emerging Molecular Applications and Summary. In: Molecular Diagnostics for Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54066-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54066-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54065-3

  • Online ISBN: 978-3-642-54066-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics