Skip to main content

Other UV/VIS Coating Materials

  • Chapter
  • First Online:
Optical Coatings

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 54))

  • 4405 Accesses

Abstract

Selected properties and applications of some other coating materials such as fluorides, metals, and organic substances are briefly discussed. With particular respect to molecular layers, some fundamentals of the classical and semiclassical treatments of the optical properties of molecules are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Hermann, S. Schulze, R. Ecke, A. Liebig, P. Schaefer, D.R.T. Zahn, M. Albrecht, M. Hietschold, S.E. Schulz, T. Gessner, Growth of carbon nanotube forests between a bi-metallic catalyst layer and a SiO2 substrate to form a self-assembled carbon–metal heterostructure. Carbon 50, 4765–4772 (2012)

    Article  Google Scholar 

  2. M. Zukic, D.G. Torr, J.F. Spann, M.R. Torr, Vacuum ultraviolet thin films. 1: optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. Appl. Opt. 29, 4284–4292 (1990)

    Article  ADS  Google Scholar 

  3. M.-C. Liu, C.-C. Lee, M. Kaneko, K. Nakahira, Y. Takano, Microstructure related properties of lanthanum fluoride films deposited by molybdenum boat evaporation at 193 nm. Thin Solid Films 492, 45–51 (2005)

    Article  ADS  Google Scholar 

  4. D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peiró, E. Quesnel, A. Tikhonravov, Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation. Appl. Opt. 41, 3196–3204 (2002)

    Article  ADS  Google Scholar 

  5. K. Iwahori, M. Furuta, Y. Taki, T. Yamamura, A. Tanaka, Optical properties of fluoride thin films deposited by RF magnetron sputtering. Appl. Opt. 45, 4598–4602 (2006)

    Article  ADS  Google Scholar 

  6. M.-C. Liu, C.-C. Lee, M. Kaneko, K. Nakahira, Y. Takano, Microstructure-related properties at 193 nm of MgF2 and GdF3 films deposited by a resistive-heating boat. Appl. Opt. 45, 1368–1374 (2006)

    Article  ADS  Google Scholar 

  7. C.-C. Jaing, M.-H. Shiao, C.-C. Lee, C.-J. Lu, M.-C. Liu, C.-H. Lee, H.-C. Chen, Effects of ion assist and substrate temperature on the optical properties and microstructure of MgF2 films produced by e-beam evaporation. Proc. SPIE 5870, 58700F-1–58700F-5 (2005)

    Article  Google Scholar 

  8. G. Atanassov, J. Turlo, J.K. Fu, Y.S. Dai, Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition. Thin Solid Films 342, 83–92 (1999)

    Article  ADS  Google Scholar 

  9. E. Quesnel, L. Dumas, D. Jacob, F. Peiró, Optical and microstructural properties of MgF2 UV coatings grown by ion beam sputtering process. J. Vac. Sci. Technol., A 18, 2869–2876 (2000)

    Article  ADS  Google Scholar 

  10. L. Dumas, E. Quesnel, J.Y. Robic, Y. Pauleau, Characterization of magnesium fluoride thin films produced by argon ion beam-assisted deposition. Thin Solid Films 382, 61–68 (2001)

    Article  ADS  Google Scholar 

  11. L.J. Lingg, J.D. Targove, J.P. Lehan, H.A. Macleod, Ion-assisted deposition of lanthanide trifluorides for VUV applications. Proc. SPIE 818, 86–92 (1987)

    ADS  Google Scholar 

  12. M. Kennedy, D. Ristau, H.S. Niederwald, Ion beam-assisted deposition of MgF2 and YbF3 films. Thin Solid Films 333, 191–195 (1998)

    Article  ADS  Google Scholar 

  13. T. Yoshida, K. Nishimoto, K. Sekine, K. Etoh, Fluoride antireflection coatings for deep ultraviolet optics deposited by ion-beam sputtering. Appl. Opt. 45, 1375–1379 (2006)

    Article  ADS  Google Scholar 

  14. N. Toyoda, I. Yamada, MgF2 and LaF3 thin film formation with gas cluster ion beam assisted deposition. Surf. Coat. Technol. 201, 8620–8623 (2007)

    Article  Google Scholar 

  15. L. Dumas, E. Quesnel, F. Pierre, F. Bertin, Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition. J. Vac. Sci. Technol., A 20, 102–106 (2002)

    Article  ADS  Google Scholar 

  16. G.O. Amolo, J.D. Comins, A.T. Davidson, A.G. Kozakiewicz, T.E. Derry, D.S. McLachlan, Visible and VUV optical absorption studies of Mg-colloids and colour centres in MgF2 crystals implanted by 100 keV Mg-ions. Nucl. Instrum. Meth. B 218, 244–248 (2004)

    Article  ADS  Google Scholar 

  17. M. Bischoff, Plasmagestützte Beschichtung von Metallfluoriden für den tiefen ultravioletten Spektralbereich. Ph.D. thesis, Friedrich-Schiller-University Jena, 2008

    Google Scholar 

  18. M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, C. Zaczek, N. Kaiser, A. Tünnermann, Metal fluoride coatings prepared by ion-assisted deposition. Proc. SPIE 7101, 71010L–71010L-10 (2008)

    Article  ADS  Google Scholar 

  19. M. Bischoff, O. Stenzel, K. Friedrich, S. Wilbrandt, D. Gäbler, S. Mewes, N. Kaiser, Plasma-assisted deposition of metal fluoride coatings and modeling the extinction coefficient of as-deposited single layers. Appl. Opt. 50, C232–C238 (2011)

    Article  Google Scholar 

  20. J.D. Targove, H.A. Macleod, Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition. Appl. Opt. 27, 3779–3781 (1988)

    Article  ADS  Google Scholar 

  21. G.O. Jones, B.L. Smith, The refractive indices of liquid and solid argon. Phil. Mag. 5(52), 355–358 (1960)

    Article  ADS  Google Scholar 

  22. L.M. Barkov, A.A. Grebenuk, N.M. Ryskulov, PYu. Stepanov, S.G. Zverev, Measurement of the refractive index of liquid xenon for intrinsic scintillation light. Nucl. Instrum. Methods Phys. Res. A379, 482–483 (1996)

    Article  ADS  Google Scholar 

  23. M. Fox, Optische Eigenschaften von Festkörpern (Optical Properties of Solids), Oldenbourg Verlag München, p. 139 (german version 2012/engl.2010)

    Google Scholar 

  24. S. Wilbrandt, O. Stenzel, M. Bischoff, N. Kaiser, Combined in situ and ex situ optical data analysis of magnesium fluoride coatings deposited by plasma ion assisted deposition. Appl. Opt. 50, C5–C10 (2011)

    Article  Google Scholar 

  25. M. Fernández-Perea, M. Vidal-Dasilva, J.I. Larruquert, J.A. Méndez, J.A. Aznárez, Narrowband filters and broadband mirrors for the spectral range from 50 to 200 nm. Proc. SPIE 7018, 70182W (2008)

    Article  Google Scholar 

  26. G. Hass, Reflecting coatings for the extreme ultraviolet. J. Opt. Soc. Am. 49, 593–601 (1959)

    Article  ADS  Google Scholar 

  27. E. Taracheva, S. Yulin, T. Feigl, N. Kaiser, High-performance multilayer coatings for 106 nm. Proc. SPIE 6705, 67050Y-1–67050Y-5 (2007)

    Article  Google Scholar 

  28. S. Wilbrandt, O. Stenzel, H. Heiße, N. Kaiser, Aluminiumbasierte Reflektoren für das DUV und VUV. Vak. Forsch. Prax. 24(4), 34 (2012)

    Article  Google Scholar 

  29. S. Wilbrandt, O. Stenzel, H. Nakamura, D. Wulff-Molder, A. Duparré, N. Kaiser, Protected and enhanced aluminum mirrors for the VUV. Appl. Opt. 53, A125–A130 (2014)

    Google Scholar 

  30. D.W. Angel, W.R. Hunter, R. Tousey, G. Hass, Extreme ultraviolet reflectance of LiF-coated aluminum mirrors. J. Opt. Soc. Am. 51, 913–914 (1961)

    Article  Google Scholar 

  31. L.R. Canfield, G. Hass, J.E. Waylonis, Further studies on MgF2 overcoated aluminum. Appl. Opt. 5, 45–50 (1966)

    Article  ADS  Google Scholar 

  32. R.H. French, H. Müllejans, D.J. Jones, Optical properties of aluminium oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81, 2549–2557 (1998)

    Article  Google Scholar 

  33. H.K. Pulker, Characterization of optical thin films. Appl. Opt. 18, 1969–1977 (1979)

    Article  ADS  Google Scholar 

  34. E.T. Hutcheson, G. Hass, J.T. Cox, Effect of deposition rate and substrate temperature on the vacuum ultraviolet reflectance of MgF2- and LiF-overcoated aluminum mirrors. Appl. Opt. 11, 2245–2248 (1972)

    Article  ADS  Google Scholar 

  35. H. Ehrenreich, H.R. Philipp, Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962)

    Article  ADS  Google Scholar 

  36. J.M. Bennett, J.L. Stanford, E.J. Ashley, Optical constants of silver sulfide tarnish films. J. Opt. Soc. Am. 60, 224–231 (1970)

    Article  ADS  Google Scholar 

  37. A. Macleod, Progress in optical coatings. Proc. SPIE 8168, 816802-1–816802-8 (2011)

    Google Scholar 

  38. D.-Y. Song, R.W. Sprague, H.A. Macleod, M.R. Jacobson, Progress in the development of a durable silver-based high-reflectance coating for astronomical telescopes. Appl. Opt. 24, 1164–1170 (1985)

    Article  ADS  Google Scholar 

  39. N. Thomas, J. Wolfe, J. Farmer, Protected silver coating for astronomical mirrors. Proc. SPIE 3352, 580 (1998)

    Article  ADS  Google Scholar 

  40. M. Boccas, T. Vucina, C. Araya, E. Vera, C. Ahhee, Protected silver coatings for the 8-m Gemini telescope mirrors. Thin Solid Films 502, 275–280 (2006)

    Article  ADS  Google Scholar 

  41. M. Vergöhl, N. Malkomes, B. Szyszka, F. Neumann, T. Matthée, Optimization of the reflectivity of magnetron sputter deposited silver films. J. Vac. Sci. Technol. A 18(4), 1632–1637 (2000)

    Article  ADS  Google Scholar 

  42. P.J. Jobst, O. Stenzel, M. Schürmann, N. Modsching, S. Yulin, S. Wilbrandt, D. Gäbler1, N. Kaiser, A. Tünnermann, Optical properties of unprotected and protected sputtered silver films: surface morphology versus UV/VIS reflectance. Adv. Opt. Technol. 3, 91–102 (2014)

    Google Scholar 

  43. M. Schürmann, P.J. Jobst, S. Yulin, T. Feigl, H. Heiße, S. Wilbrandt, O. Stenzel, A. Gebhardt, S. Risse, N. Kaiser, Optical reflector coatings for astronomical applications from EUV to IR. Proc. SPIE 8450, 84502K-1–8 (2012)

    Google Scholar 

  44. S. Aisenberg, R. Chabot, Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 2953–2958 (1971)

    Article  ADS  Google Scholar 

  45. S.M. Ojha, L. Holland, Some characteristics of hard carbonaceous films. Thin Solid Films 40, L31–L32 (1977)

    Article  ADS  Google Scholar 

  46. A. Bubenzer, B. Dischler, G. Brand, P. Koidl, rf-plasma deposited amorphous hydrogenated hard carbon thin films: preparation, properties, and applications. J. Appl. Phys. 54, 4590–4595 (1983)

    Article  ADS  Google Scholar 

  47. F.W. Smith, Optical constants of a hydrogenated amorphous carbon film. J. Appl. Phys. 55, 764–771 (1984)

    Article  ADS  Google Scholar 

  48. N. Savvides, Optical constants and associated functions of metastable diamondlike amorphous carbon films in the energy range 0.5–7.3 eV. J. Appl. Phys. 59, 4133–4145 (1986)

    Article  ADS  Google Scholar 

  49. O. Stenzel, R. Petrich, M. Vogel, The optical constants of the so-called “diamond-like” carbon layers and their description in terms of semiempirical dispersion models. Opt. Mater. 2, 125–142 (1993)

    Article  ADS  Google Scholar 

  50. J. Robertson, E.P. O’Reilly, Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946–2957 (1987)

    Article  ADS  Google Scholar 

  51. M.A. Tamor, C.H. Wu, Graphitic network models of ‘‘diamondlike’’ carbon. J. Appl. Phys. 67, 1007–1012 (1990)

    Article  ADS  Google Scholar 

  52. M. Vogel, O. Stenzel, Modified floatation method as an accurate tool for determining the macroscopic mass density of optical interference coatings. Proc. SPIE 2253, 655–666 (1994)

    Article  ADS  Google Scholar 

  53. P. Couderc, Y. Catherine, Structure and physical properties of plasma-grown amorphous hydrogenated carbon films. Thin Solid Films 146, 93–107 (1987)

    Article  ADS  Google Scholar 

  54. G.A.N. Connell, in: Topics in Applied Physics, Amorphous Semiconductors, vol. 36, ed. by M.H. Brodsky (Springer, Berlin 1979), pp. 73–87

    Google Scholar 

  55. O. Stenzel, in: Advances in solid state physics, ed. by B. Kramer (Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1999), pp. 151–160

    Google Scholar 

  56. O. Stenzel, R. Petrich, T. Wallendorf, M. Vogel, M. Köhl, Nitrogenation of amorphous carbon layers as a method for improving their performance as a spectrally selective absorber coating. SPIE-Proc. 2017, 357–365 (1993)

    Article  ADS  Google Scholar 

  57. N. Treitz: Von der Unbestimmtheitsrelation zur Farbe der Tomate, in Spektrum der Wissenschaft 30 (Nov 2010)

    Google Scholar 

  58. C. Präfke, U. Schulz, N. Kaiser, A. Tünnermann, Ultraviolet/visible and Fourier transform infrared spectroscopic investigations of organic-inorganic hybrid layers for UV protection. Thin Solid Films 532, 113–118 (2013)

    Article  ADS  Google Scholar 

  59. S. Wolleb, Charakterisierung des Spannungsverhaltens von organisch/anorganischen Nanolaminaten und Hybridschichten, Jena, Ernst-Abbe-Fachhochschule Jena, Fachbereich SciTec, Master thesis, 2012

    Google Scholar 

  60. U. Schulz, Hybrid organic- films organic coatings for optical applications, optical interference coatings technical digest © OSA 2013, paper ThA.1 (2013)

    Google Scholar 

  61. A. Stendal, U. Beckers, S. Wilbrandt, O. Stenzel, C. von Borczyskowski, The linear optical constants of thin phthalocyanine and fullerite films from the near infrared up to the UV spectral regions: estimation of electronic oscillator strength values. J. Phys. B: At. Mol. Opt. Phys. 29, 2589–2595 (1996)

    Article  ADS  Google Scholar 

  62. U. Beckers, O. Stenzel, S. Wilbrandt, U. Falke, C. von Borczyskowski, The optical absorption of ultrathin organic molecular films: the thickness dependence of the absorption line position. J. Phys.: Condens. Matter 10, 1721–1732 (1998)

    ADS  Google Scholar 

  63. S. Jäger, F. Neumann, C.-P. Klages, Investigation on the preparation and properties of organic dye/metal oxide composite thin films. Proc. SPIE 2253, 521–527 (1994)

    Google Scholar 

  64. S. Davydov, Quantenmechanik (engl.: Quantum mechanics) (VEB Deutscher Verlag der Wissenschaft, Berlin 1978)

    Google Scholar 

  65. O. Stenzel, The physics of thin film optical spectra. An introduction (Springer, Berlin, 2005)

    Google Scholar 

  66. A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines. J. Pure Appl. Opt. 5, 845–853 (1996)

    Article  ADS  Google Scholar 

  67. L.T. Eremenko, A.M. Korolev, Relation between density and refractive index of organic compounds. Russ. Chem. Bull. 21, 172–174 (1972)

    Article  Google Scholar 

  68. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1968)

    Google Scholar 

  69. P. Dub, The influence of a surface monolayer on the s-polarized optical properties of a dielectric; the classical microscopical model. Surf. Sci. 135, 307–324 (1983)

    Article  ADS  Google Scholar 

  70. D.V. Sivukhin, Molecular theory of the reflection and refraction of light. Zhurn. Eksp. Teor. Fiz. 18, 976–994 (1948)

    Google Scholar 

  71. Z. Shen, S.R. Forrest, Quantum size effects of charge-transfer excitonsin nonpolar molecular organic thin films. Phys. Rev. B 55, 10578–10592 (1997)

    Article  ADS  Google Scholar 

  72. U. Gomez, M. Leonhardt, H. Port, H.C. Wolf, Optical properties of amorphous ultrathin films of perylene derivatives. Chem. Phys. Lett. 268, 1–6 (1997)

    Article  ADS  Google Scholar 

  73. H. Proehl, R. Nitsche, T. Dienel, K. Leo, T. Fritz, In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates. Phys. Rev. B 71, 165207-1–165207-14 (2005)

    Article  ADS  Google Scholar 

  74. G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules (Krieger, 1989)

    Google Scholar 

  75. W.H. Flygare, Molecular Structure and Dynamics (Prentice-Hall Inc., Englewood cliffs, 1978)

    Google Scholar 

  76. C. Дaвыдoв: Teopия Tвepдoгo Teлa; Mocквa Hayкa, Глaвнaя Peдaкция, Физикo-Maтeмaтичecкoй Литepaтypы, 1976 (engl.: A. S. Davydov: Theorie of Solid State (in russ.); Moskau Nauka 1976)

    Google Scholar 

  77. S. Wilbrandt, Optische Charakterisierung heterogener Dünnschichtsysteme mit molekularen Komponenten. Diploma thesis, Technische Universität Chemnitz, Fakultät für Naturwissenschaften, 1998

    Google Scholar 

  78. J.W. Patterson, The ultraviolet absorption spectra of coronene. J. Am. Chem. Soc. 64, 1485–1486 (1942)

    Article  Google Scholar 

  79. K. Walzer, M. Sternberg, M. Hietschold, Formation and characterization of coronene monolayers on HOPG(0001) and MoS2(0001): a combined STM/STS and tight-binding study. Surf. Sci. 415, 376–384 (1998)

    Article  ADS  Google Scholar 

  80. T. Kosugi, T. Miyake, S. Ishibashi, R. Arita, H. Aoki, Electronic structure of solid coronene: differences and commonalities to picene, Phys. Rev. B 84, 020507(R) (2011) (4 pages)

    Google Scholar 

  81. A.A. Sokolov, I.M. Ternov, V.T. Shukowski: Квaнтoвaя Mexaникa (engl. Quantum mechanics), Moscow Nauka, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stenzel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenzel, O. (2014). Other UV/VIS Coating Materials. In: Optical Coatings. Springer Series in Surface Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54063-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54063-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54062-2

  • Online ISBN: 978-3-642-54063-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics