Skip to main content

Material Aspects in Coating Design

  • Chapter
  • First Online:
Optical Coatings

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 54))

Abstract

The impact of the optical constants real properties on general problems of coating design is discussed. Emphasis is given on material choice for both normal and oblique incidence spectral targets, and on general feasibility considerations by means of computational manufacturing runs for different available deposition process monitoring approaches. As a major example, the impact of optical constants and their reproducibility on the performance of a broadband antireflection coating is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Klopfenstein, A transmission line taper of improved design. Proc. IRE 44(1), 31–35 (1956)

    Article  Google Scholar 

  2. A.V. Tikhonravov, J.A. Dobrowolski, Quasi-optimal synthesis for antireflection coatings: a new method. Appl. Opt. 32, 4265–4275 (1993)

    Article  ADS  Google Scholar 

  3. E.B. Grann, M.G. Moharam, D.A. Pommet, Optimal design for antireflective tapered two-dimensional sub wavelength grating structures. J. Opt. Soc. Am. A 12, 333–339 (1995)

    Article  ADS  Google Scholar 

  4. J.A. Dobrowolski, A.V. Tikhonravov, M.K. Trubetskov, B.T. Sullivan, P.G. Verly, Optimal single-band normal-incidence antireflection coatings. Appl. Opt. 35, 644–658 (1996)

    Article  ADS  Google Scholar 

  5. R. Willey, Refined criteria for estimating limits of broad-band AR coatings. Proc. SPIE 5250, 393–399 (2004)

    Article  ADS  Google Scholar 

  6. J.A. Dobrowolski, Antireflection coatings: key optical components, Proc. SPIE. 5963(22005), 596303-1–596303-12 (2005)

    Google Scholar 

  7. T.V. Amotchkina, Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings. Appl. Opt. 47, 3109–3113 (2008)

    Article  ADS  Google Scholar 

  8. S. Wilbrandt, O. Stenzel, N. Kaiser, All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization. Opt. Express 18, 19732–19742 (2010)

    Article  ADS  Google Scholar 

  9. H.A. Macleod, Thin-Film Optical Filters, 4th edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  10. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill Book Company, New York, 1989)

    Google Scholar 

  11. S.A. Furman, A.V. Tikhonravov, Basics of Optics of Multilayer System (Edition Frontieres, Paris, 1992)

    Google Scholar 

  12. P.W. Baumeister, Optical Coating Technology (SPIE Press, Bellingham, 2004)

    Book  Google Scholar 

  13. R.R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker Inc., New York, 2002)

    Book  Google Scholar 

  14. A.V. Tikhonravov, in Optical Interference Coatings, ed. by N. Kaiser, H.K. Pulker (Springer-Verlag, Berlin, 2003)

    Google Scholar 

  15. A.V. Tikhonravov, M.K. Trubetskov, Modern design tools and a new paradigm in optical coating design. Appl. Opt. 51, 7319–7332 (2012)

    Article  ADS  Google Scholar 

  16. A.V. Tikhonravov, M.K. Trubetskov, Computational manufacturing as a bridge between design and production. Appl. Opt. 44, 6877–6884 (2005)

    Article  ADS  Google Scholar 

  17. A.V. Tikhonravov, Some theoretical aspects of thin film optics and their applications. Appl. Opt. 32, 5417–5426 (1993)

    Article  ADS  Google Scholar 

  18. Advanced thin film optical coatings: evaluation and design. Lecture in materials of the 17-th European optilayer workshop, optical coatings for modern applications (Jena, Germany, 11–13 Mar 2013)

    Google Scholar 

  19. M. Friz, F. Waibel, Optical Interference Coatings, ed. by N. Kaiser, H.K. Pulker (Springer-Verlag, Berlin, 2003), p. 105

    Google Scholar 

  20. M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Phys. Rev. B 71, 115109-1–115109-1 (2005)

    Google Scholar 

  21. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys, Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. Opt. Lett. 37, 1478–1480 (2012)

    Article  ADS  Google Scholar 

  22. X. Fu, M. Commandré, L. Gallais, M. Mende, H. Ehlers, D. Ristau, Laser-induced Damage in scandium, hafnium, aluminum oxides composites with silica in the infrared, Optical Interference Coatings Technical Digest © OSA 2013, paper FB.3 (2013)

    Google Scholar 

  23. B.T. Sullivan, J.A. Dobrowolski, Deposition error compensation for optical multilayer coatings: I. Theor. descr. Appl. Opt. 31, 3821–3835 (1992)

    ADS  Google Scholar 

  24. C. Holm, Optical thin film production with continuous reoptimization of layer thicknesses. Appl. Opt. 18, 1978–1982 (1979)

    Article  ADS  Google Scholar 

  25. L. Li, Y. Yen, Wideband monitoring and measurement system for optical coatings. Appl. Opt. 28, 2889–2894 (1989)

    Article  ADS  Google Scholar 

  26. J.A. Dobrowolski, Modern computational methods for optical thin film systems. Thin Solid Films 34, 313–321 (1976)

    Article  ADS  Google Scholar 

  27. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, K.H. Hoffmann, Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment. Appl. Opt. 49, 3150–3162 (2010)

    Article  ADS  Google Scholar 

  28. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, V. Pervak, Estimations of production yields for selection of a practical optimal optical coating design. Appl. Opt. 50, C141–C147 (2011)

    Article  Google Scholar 

  29. M. Held, S. Wilbrandt, O. Stenzel, N. Kaiser, A. Tünnermann, Practical optimization of a coating deposition process by application of hybrid monitoring strategies in an in-dustrial production environment. Adv. Opt. Technol. 2, 189–196 (2013)

    ADS  Google Scholar 

  30. W.P. Theoni, Deposition of optical coatings: process control and automation. Thin Solid Films 88, 385–397 (1982)

    Article  ADS  Google Scholar 

  31. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, Investigation of the error self-compensation effect associated with broadband optical monitoring. Appl. Opt. 50, C111–C116 (2011)

    Article  Google Scholar 

  32. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring. Appl. Opt. 45, 7026–7034 (2006)

    Article  ADS  Google Scholar 

  33. Presentations given at the 17-th European OptiLayer Workshop, Optical Coatings for Modern Applications, (Jena, Germany, 11–13 Mar 2013)

    Google Scholar 

  34. B.T. Sullivan, G. Carlow, An overview of optical monitoring techniques, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest, paper TuC1 (Optical Society of America, 2010)

    Google Scholar 

  35. H. Ehlers, S. Schlichting, C. Schmitz, D. Ristau, From independent thickness monitoring to adaptive manufacturing: advanced deposition control of complex optical coatings. Proc. SPIE 8168, 81681 (2011)

    Article  ADS  Google Scholar 

  36. H. Ehlers, S. Schlichting, C. Schmitz, D. Ristau, Hybrid Process Control for Precision Optics Enhanced by Computational Manufacturing, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest, paper TuC6 (Optical Society of America, 2010)

    Google Scholar 

  37. O. Züger, Dielectric Filter Production with in situ Broadband Optical Monitoring, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest, paper TuC4 (Optical Society of America, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stenzel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenzel, O. (2014). Material Aspects in Coating Design. In: Optical Coatings. Springer Series in Surface Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54063-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54063-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54062-2

  • Online ISBN: 978-3-642-54063-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics