Skip to main content

Strongly Porous Materials and Surface Structures

  • Chapter
  • First Online:
Optical Coatings

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 54))

  • 4383 Accesses

Abstract

Examples of subwavelength structures such as periodic or stochastic motheye structures and porous silicon dioxide are discussed with respect to spectrally broadband and angle tolerant antireflection tasks. Application concern transmissive optics as well as absorber designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Brückner, B. Pradarutti, O. Stenzel, R. Steinkopf, S. Riehemann, G. Notni, A. Tünnermann, Broadband antireflective surface-relief structure for THz optics. Opt. Express 15, 779–789 (2007)

    Article  ADS  Google Scholar 

  2. P.B. Clapham, M.C. Hutley, Reduction of lens reflexion by the “moth eye” principle. Nature 244, 281–282 (1973)

    Article  ADS  Google Scholar 

  3. R. Brunner, B. Keil, C. Morhard, D. Lehr, J. Draheim, U. Wallrabe, J. Spatz, Antireflective “moth-eye” structures on tunable optical silicone membranes. Appl. Opt. 51, 4370–4376 (2012)

    Article  Google Scholar 

  4. Fv Hulst, P. Geelen, A. Gebhardt, R. Steinkopf, Diamond tools for producing micro-optic elements. Ind. Diamond Rev. 3, 58–62 (2005)

    Google Scholar 

  5. A. Kaless, U. Schulz, P. Munzert, N. Kaiser, NANO-motheye antireflection pattern by plasma treatment of polymers. Surf. Coat. Tech. 200, 58–61 (2005)

    Article  Google Scholar 

  6. R. Leitel, J. Petschulat, A. Kaless, U. Schulz, O. Stenzel, N. Kaiser, Optical properties of stochastic subwavelength surface structures, in Proceedings of SPIE, vol. 5965 (2005), pp. 59651O-1–59651O-10

    Google Scholar 

  7. J. Petschulat, Herstellung, Charakterisierung und theoretische behandlung von metallbeschichteten mottenaugenstrukturen, Friedrich-Schiller-Universität Jena/Fraunhofer IOF, diploma thesis (2005)

    Google Scholar 

  8. O. Stenzel, U. Schulz, N. Kaiser, Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities. Adv. Opt. Technol. 1, 79–89 (2012)

    ADS  Google Scholar 

  9. J.A. Dobrowolski, A.V. Tikhonravov, M.K. Trubetskov, Brian T. Sullivan, P.G. Verly, Optimal single-band normal-incidence antireflection coatings. Appl. Opt. 35, 644–658 (1996)

    Article  ADS  Google Scholar 

  10. U. Schulz, Wideband antireflection coatings by combining interference multilayers with structured top layers. Opt. Express 17, 8704–8708 (2009)

    Article  ADS  Google Scholar 

  11. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, M.A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, D. Gäbler, New optimization algorithm for the synthesis of rugate optical coatings. Appl. Opt. 45, 1515–1524 (2006)

    Article  ADS  Google Scholar 

  12. R.W. Klopfenstein, A transmission line taper of improved design, in Proceedings of the IRE (1956), pp. 31–35

    Google Scholar 

  13. E.B. Grann, M.G. Moharam, D.A. Pommet, Optimal design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 12, 333–339 (1995)

    Article  ADS  Google Scholar 

  14. S.R. Kennedy, M.J. Brett, Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 42, 4573–4579 (2003)

    Article  ADS  Google Scholar 

  15. J.A. Dobrowolski, Antireflection coatings: key optical components, in Proceedings of SPIE, vol. 5963 (2005), pp. 596303-1–596303-12

    Google Scholar 

  16. G. Kalkowski, O. Stenzel, W. Stöckl, Electrostatic chuck, e.g. for use in lithographic process of silicon, has transparent cover, and silicon oxide and/or aluminum oxide film applied on portion of chromium oxide film applied on base layer comprising metal applied on substrate, Patent Number(s): US2009279101–A1,DE102008022792–A1,US8081317–B2 (2009)

    Google Scholar 

  17. R.J.C. Brown, P.J. Brewer, M.J.T. Milton, The physical and chemical properties of electroless nickel phosphorus alloys and low reflectance nickel phosphorus black surfaces. J. Mater. Chem. 12, 2749–2754 (2002)

    Article  Google Scholar 

  18. H. Jansen, W. de Boer, B. Oiler, W. Elwenspoek, The black silicon method IV: the fabrication of three dimensional structuresin silicon with high aspect ratios for scanning probe microscopy and other applications (IEEE 1995), pp. 88–93

    Google Scholar 

  19. S. Koynov, M.S. Brandt, M. Stutzmann, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett. 88, 203107-1–203107-1 (2006)

    Google Scholar 

  20. K. Füchsel, M. Kroll, T. Käsebier, M. Otto, T. Pertsch, E.-B. Kley, R.B. Wehrspohn, N. Kaiser, A. Tünnermann, Black silicon photovoltaics, in Proceedings of SPIE, vol. 8438 (2012), pp. 84380M-1–84380M-8

    Google Scholar 

  21. I.M. Thomas, High laser damage threshold porous silicon dioxide antireflective coating. Appl. Opt. 25, 1481–1483 (1986)

    Article  ADS  Google Scholar 

  22. H. Nagel, A.G. Aberle, R. Hezel, Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide. Prog. Photovoltaics Res. Appl. 7, 245–260 (1999)

    Article  Google Scholar 

  23. J.-Q. Xi, M.F. Schubert, J. Kyu Kim, E.F. Schubert, M. Chen, S. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection. Nat. Photonics 1, 176–179 (2007)

    ADS  Google Scholar 

  24. M.F. Schubert, F.W. Mont, S. Chhajed, D.J. Poxson, J.K. Kim, E.F. Schubert, Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. Opt. Express 16, 5290–5298 (2008)

    Article  ADS  Google Scholar 

  25. B.E. Yoldas, Investigations of porous oxides as an antireflective coating for glass surfaces. Appl. Opt. 19, 1425–1429 (1980)

    Article  ADS  Google Scholar 

  26. D. Zhao, P. Yang, N. Melosh, J. Feng, B.F. Chmelka, G.D. Stucky, Continuous mesoporous silicon dioxide films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)

    Article  Google Scholar 

  27. S. Matsuno, N. Sakamoto, T. Akaogi, H. Shirataki, I. Doi, Characterization of Nano-structures of porous silicon dioxide thin films by crazing incidence X-ray scattering method. Xsen Bunseki Toronkai Koen Yoshishu 39, 3–6 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stenzel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenzel, O. (2014). Strongly Porous Materials and Surface Structures. In: Optical Coatings. Springer Series in Surface Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54063-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54063-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54062-2

  • Online ISBN: 978-3-642-54063-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics