Advertisement

Linking Biomedical Data for Disease-SNP Relation Discovery

  • Na Hong
  • Qing Qian
  • An Fang
  • Sizhu Wu
  • Junhui Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 406)

Abstract

Traditional relation discovery is always conducted through either text mining or database analysis. However, in the real world, knowledge exists in different formats and can be expressed in a variety of forms. Discovering relations between diseases and single-nucleotide polymorphisms (SNPs) is challenging because of difficulties in unstructured data processing or distributed heterogeneous data integration. With the development of Sematic Web theory and technology, it provides feasibility to reconstruct the traditional data integration process in a sematic manner in the biomedical big data era. Our study aims to discover disease-SNP relation in integrated linked data to facilitate scientific research analyses and reduce biological experiment costs. We focus on investigating the capability of linked data techniques in integrating and mining relationships between diseases, genes, and SNPs. To demonstrate the effectiveness of our proposed method, we conducted a case study in Alzheimer’s disease-SNPs discovery by integrating 10 datasets.

Keywords

Semantic Web Linked Data SNPs Relation Discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ChengHong, Y., YuHuei, C., LiYeh, C., HsuehWei, C.: Drug-SNPing: an integrated drug-based, protein interaction-based tag SNP-based pharmacogenomics platform for SNP genotyping. Bioinformatics 29, 758–764 (2013)CrossRefGoogle Scholar
  2. 2.
    Wataru, S., Yuko, N., Ikuko, M., Yushi, H., Chiyomi, I., Michiaki, K., Takahisa, K., Tatsuhiko, T., Masahiko, W., Atsushi, T., Hiroyuki, T., Kenji, N., Kazuko, H., Fumiya, O., Takeo, Y., Hideshi, K., Saburo, S., Mitsutoshi, Y., Nobutaka, H., Miho, M.: Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nature Genetics 41, 1303–1307 (2009)CrossRefGoogle Scholar
  3. 3.
    Slater, T., Bouton, C., Huang, E.S.: Beyond data integration. Drug Discovery 13, 584–589 (2008)CrossRefGoogle Scholar
  4. 4.
    Neumann, E.K.: A life science semantic web: are we there yet? Scienc Today 283, 22–25 (2005)Google Scholar
  5. 5.
    Neumann, E.K., Miller, E., Wilbanks, J.: What the semantic web could do for the life sciences. Drug Discovery Today 2, 228–234 (2006)Google Scholar
  6. 6.
    Xiao, D., Ying, D., Huijun, W., Bin, C., David, J.: Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space. In: FWCS(The Future of the Web for Collaborative Science), Raleigh, USA (April 26, 2010)Google Scholar
  7. 7.
    Vidal, M.-E., Raschid, L., Márquez, N., Rivera, J.C., Ruckhaus, E.: BioNav: An Ontology-Based Framework to Discover Semantic Links in the Cloud of Linked Data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 441–445. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Benjamin, B., Ranjana, S., Ritika, S., Phani, T.: Pathfinder: Complex Relation Discovery and Ontological Management Software for Generic Ontologies or Web Based Triples, http://obiwan.cs.ndsu.nodak.edu/~rsharma/AIProject.pdf
  9. 9.
    Harland, L.: Open PHACTS: A semantic knowledge infrastructure for public and commercial drug discovery research. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 1–7. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Chung, Y.A., Hyun, O.J., Kim, J.Y., Kim, K.J., Ahn, K.: Hypoperfusion and Ischemia in Cerebral Amyloid Angiopathy Documented by 99mTc-ECD Brain Perfusion SPECT. J. Nucl. Med. 50, 1969–1974 (2009)CrossRefGoogle Scholar
  11. 11.
    Weller, R.O., Preston, S.D., Subash, M., Carare, R.O.: Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res. Ther. 1, 6 (2009)CrossRefGoogle Scholar
  12. 12.
    Yamada, M.: Predicting cerebral amyloid angiopathy-related intracerebral hemorrhages and other cerebrovascular disorders in Alzheimer’s disease. Front Neurol. 3, 64 (2012)Google Scholar
  13. 13.
    Weller, R.O., Preston, S.D., Subash, M., Carare, R.O.: Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimer’s Research & Therapy 1, 6 (2009)CrossRefGoogle Scholar
  14. 14.
    Thal, D.R., Griffin, W.S., de Vos, R.A., Ghebremedhin, E.: Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathologica 115, 599–609 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Na Hong
    • 1
  • Qing Qian
    • 1
  • An Fang
    • 1
  • Sizhu Wu
    • 1
  • Junhui Wang
    • 1
  1. 1.Institute of Medical InformationChinese Academy of Medical SciencesBeijingChina

Personalised recommendations