A New Model to Compute Semantic Similarity from Multi-ontology

  • Lan Wang
  • Ming Chen
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 406)


Many measuring semantic similarity, with different methods, are applied in Natural Language Processing, knowledge acquisition and information retrieval. Recently, some authors have extended some of the existing methodologies to support multiple ontologies to improve the correlation values. In this paper, a feature-based method with heuristic function is proposed to deal with multi-ontology. By comparing the correlation values attained in this method with those of Pedersen’s biomedical benchmark, a higher accuracy is achieved.


Semantic similarity Feature-based multi-ontology correlation value heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patwardhan, S., Banerjee, S., Pedersen, T.C.: Using measures of semantic relatedness for word sense disambiguation. In: Proceedings of the Fourth International Conference on Intelligent Text Processing and Computational Linguistics, Mexico City, pp. 241–257 (2003)Google Scholar
  2. 2.
    Chen, P., Lin, S.J., Chu, Y.C.: Using Google latent semantic distance to extract the most relevant information. J. Expert Systems with Applications 38, 7349–7358 (2011)CrossRefGoogle Scholar
  3. 3.
    Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G.M., Milios, E.E.: Information retrieval by semantic similarity. Int. J. Semantic Web Inf. Syst. 2(3), 55–73 (2006)CrossRefGoogle Scholar
  4. 4.
    Sanchez, D., Batet, M.: A New Model to Compute the Information Content of Concepts from Taxonomic Knowledge. International Journal on Semantic Web and Information Systems 8(2), 34–50 (2012)CrossRefGoogle Scholar
  5. 5.
    Pedersen, T., Pakhomov, S., Patwardhan, S., Chute, C.: Measures of semantic similarity and relatedness in the biomedical domain. Journal of Biomedical Informatics 40(3), 288–299 (2007)CrossRefGoogle Scholar
  6. 6.
    Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: WordNet: An Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)Google Scholar
  7. 7.
    Java, A., Nirenburg, S., McShane, M., Finin, T.W., English, J., Joshi, A.: Using a natural language understanding system to generate semantic web content. International Journal on Semantic Web and Information Systems 3(4), 50–74 (2007)CrossRefGoogle Scholar
  8. 8.
    Rada, R., Mili, H., Bichnell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  9. 9.
    Petrakis, E.G.M., Varelas, G., Hliaoutakis, A., Raftopoulou, P.: X-similarity: computing semantic similarity between concepts from different ontologies. Digit. Inform. Manage. 4, 233–237 (2006)Google Scholar
  10. 10.
    Tversky, A.: Features of similarity. Psycological Review 84, 327–352 (1977)CrossRefGoogle Scholar
  11. 11.
    Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: A new feature-based approach. Expert Systems with Applications 39, 7718–7728 (2012)CrossRefGoogle Scholar
  12. 12.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proc. of 14th International Joint Conference on Artificial Intelligence, IJCAI 1995, pp. 448–453. Morgan Kaufmann Publishers Inc., Montreal (1995)Google Scholar
  13. 13.
    Lin, D.: An information-theoretic definition of similarity. In: Proc. of Fifteenth International Conference on Machine Learning, ICML 1998, pp. 296–304. Morgan Kaufmann, Madison (1998)Google Scholar
  14. 14.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. of International Conference on Research in Computational Linguistics, pp. 19–33. ROCLING X, Taipei (1997)Google Scholar
  15. 15.
    Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)CrossRefGoogle Scholar
  16. 16.
    Al-Mubaid, H., Nguyen, H.A.: Measuring Semantic Similarity Between Biomedical Concepts Within Multiple Ontologies. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews 39, 389–398 (2009)CrossRefGoogle Scholar
  17. 17.
    Sánchez, D., Solé-Ribalta, A., Batet, M., Serratosa, F.: Enabling semantic similarity estimation across multiple ontologies: an evaluation in the biomedical domain. Biomed. Inform. 45(1), 141–155 (2012)CrossRefGoogle Scholar
  18. 18.
    Batet, M., Sánchez, D., Valls, A., Gibert, K.: Semantic similarity estimation from multiple ontologies. Applied Intelligenc. 38(1), 29–44 (2013)CrossRefGoogle Scholar
  19. 19.
    Sánchez, D., Batet, M.: A semantic similarity method based on information content exploiting multiple ontologies. Expert Systems with Application 40, 1393–1399 (2013)CrossRefGoogle Scholar
  20. 20.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (1991)CrossRefGoogle Scholar
  21. 21.
    Rubenstein, H., Goodenough, J.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  22. 22.
    Fellbaum, C.: WordNet. Springer, Netherlands (2010)Google Scholar
  23. 23.
    Fanizzi, N., d’Amato, C., Esposito, F.: Inductive classification of semantically annotated resources through reduced Coulomb energy networks. International Journal on Semantic Web and Information Systems 5(4), 19–38 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lan Wang
    • 1
  • Ming Chen
    • 1
  1. 1.College of Information TechnologyShanghai Ocean UniversityShanghaiChina

Personalised recommendations