Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 883))

  • 3574 Accesses

Abstract

In chapter three the loop-level structure of amplitudes is reviewed. Here the reduction of one-loop Feynman integrals to a basis of scalar integrals is discussed. The idea of (generalized) unitarity in constructing one-loop amplitudes from tree-level data is reviewed and a number of concrete examples are computed in detail. In the second part of chapter three we give an introduction to the evaluation of Feynman integrals at one and higher loop order. After reviewing their definition and useful parameter representations, such as the Feynman and Mellin representations, we give an introduction to the integration by parts techniques in conjunction with differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that i0 is always to be understood as a positive infinitesimal quantity. Strictly speaking the i0 in Eq. (3.1) differs from the i0 here by a positive factor of \(2\sqrt{ \mathbf {k}^{2}+m^{2}}\) and terms of order (i0)2 are suppressed. The same will be true when we introduce Feynman parametrization below.

  2. 2.

    For this counting one simply adds the powers of the loop-momentum l in the denominator and numerator of the integral including the measure. A positive or vanishing result indicates a UV-divergent integral: ∫d 4 ll a/l b is UV-divergent for 4+ab. Equality in this relation entails a logarithmic divergence, the other cases yield power-like divergences. In fact dimensional regularization is only sensitive to logarithmic divergencies, power-like divergences are set to zero.

  3. 3.

    The definition will be clarified below in the Feynman representation.

  4. 4.

    In fact \(q_{N}^{\mu}=0\) so in the last equation the sum effectively only runs up to i=N−1, but this does not change the argument.

  5. 5.

    With the upper indices [i] we denote the spins of the respective particles running in the loop.

  6. 6.

    Recall that ε i ε i =0 and that in our gauge choice p i ε j =0.

References

  1. G.P. Korchemsky, A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit. Phys. Lett. B 279, 359–366 (1992). arXiv:hep-ph/9203222

    Article  ADS  Google Scholar 

  2. Z. Bern, A. De Freitas, L.J. Dixon, H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts. Phys. Rev. D 66, 085002 (2002). arXiv:hep-ph/0202271

    Article  ADS  Google Scholar 

  3. G. Passarino, M.J.G. Veltman, One loop corrections for e+ e− annihilation into mu+ mu− in the Weinberg model. Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  4. R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD. J. High Energy Phys. 0802, 002 (2008). arXiv:0712.1851

    Article  ADS  Google Scholar 

  5. G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams. Comput. Phys. Commun. 66, 1 (1991)

    Article  ADS  MATH  Google Scholar 

  6. T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions. Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  7. A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions. Comput. Phys. Commun. 182, 2427 (2011). arXiv:1007.4716

    Article  ADS  MATH  Google Scholar 

  8. G. Cullen, J.P. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, et al., Golem95C: a library for one-loop integrals with complex masses. Comput. Phys. Commun. 182, 2276 (2011). arXiv:1101.5595

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts. Phys. Rep. 518, 141–250 (2012). arXiv:1105.4319

    Article  ADS  MathSciNet  Google Scholar 

  10. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1, 429 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B 435, 59 (1995). arXiv:hep-ph/9409265

    Article  ADS  Google Scholar 

  12. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop self-dual and 𝒩=4 super Yang-Mills. Phys. Lett. B 394, 105 (1997). arXiv:hep-th/9611127

    Article  ADS  MathSciNet  Google Scholar 

  13. R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Masses, fermions and generalized D-dimensional unitarity. Nucl. Phys. B 822, 270 (2009). arXiv:0806.3467

    Article  ADS  MATH  Google Scholar 

  14. V.A. Smirnov, Evaluating Feynman integrals. Tracts Mod. Phys. 211, 1 (2004)

    Article  Google Scholar 

  15. V.A. Smirnov, Analytic tools for Feynman integrals. Tracts Mod. Phys. 250, 1 (2012)

    Article  Google Scholar 

  16. J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs. Phys. Lett. B 469, 225 (1999). arXiv:hep-ph/9909506

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box. Phys. Lett. B 460, 397 (1999). arXiv:hep-ph/9905323

    Article  ADS  Google Scholar 

  18. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals. Comput. Phys. Commun. 175, 559 (2006). arXiv:hep-ph/0511200

    Article  ADS  MATH  Google Scholar 

  19. A.V. Smirnov, V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals. Eur. Phys. J. C 62, 445 (2009). arXiv:0901.0386

    Article  ADS  MATH  Google Scholar 

  20. J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A 14, 2037 (1999). arXiv:hep-ph/9806280

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. S. Moch, P. Uwer, XSummer: transcendental functions and symbolic summation in form. Comput. Phys. Commun. 174, 759 (2006). arXiv:math-ph/0508008

    Article  ADS  MATH  Google Scholar 

  22. J. Ablinger, J. Blumlein, C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54, 082301 (2013). arXiv:1302.0378

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Gluza, K. Kajda, T. Riemann, AMBRE: a mathematica package for the construction of Mellin-Barnes representations for Feynman integrals. Comput. Phys. Commun. 177, 879 (2007). arXiv:0704.2423

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. J.M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806

    Article  ADS  Google Scholar 

  25. J.M. Henn, A.V. Smirnov, V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation. J. High Energy Phys. 1307, 128 (2013). arXiv:1306.2799

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms. Int. J. Mod. Phys. A 15, 725 (2000). arXiv:hep-ph/9905237

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms. Comput. Phys. Commun. 174, 222 (2006). arXiv:hep-ph/0507152

    Article  ADS  Google Scholar 

  28. G. ’t Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Ossola, C.G. Papadopoulos, R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl. Phys. B 763, 147 (2007). arXiv:hep-ph/0609007

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. W.T. Giele, Z. Kunszt, K. Melnikov, Full one-loop amplitudes from tree amplitudes. J. High Energy Phys. 0804, 049 (2008). arXiv:0801.2237

    Article  ADS  MathSciNet  Google Scholar 

  31. W.L. van Neerven, J.A.M. Vermaseren, Large loop integrals. Phys. Lett. B 137, 241 (1984)

    Article  ADS  Google Scholar 

  32. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B 425, 217 (1994). arXiv:hep-ph/9403226

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. R. Britto, F. Cachazo, B. Feng, Generalized unitarity and one-loop amplitudes in 𝒩=4 super-Yang-Mills. Nucl. Phys. B 725, 275 (2005). arXiv:hep-th/0412103

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Z. Bern, L.J. Dixon, D.A. Kosower, One-loop amplitudes for e+ e to four partons. Nucl. Phys. B 513, 3 (1998). arXiv:hep-ph/9708239

    Article  ADS  Google Scholar 

  35. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, D-dimensional unitarity cut method. Phys. Lett. B 645, 213 (2007). arXiv:hep-ph/0609191

    Article  ADS  Google Scholar 

  36. R. Britto, B. Feng, Integral coefficients for one-loop amplitudes. J. High Energy Phys. 0802, 095 (2008). arXiv:0711.4284

    Article  ADS  MathSciNet  Google Scholar 

  37. S.D. Badger, Direct extraction of one loop rational terms. J. High Energy Phys. 0901, 049 (2009). arXiv:0806.4600

    Article  ADS  MathSciNet  Google Scholar 

  38. Z. Bern, L.J. Dixon, D.A. Kosower, On-shell methods in perturbative QCD. Ann. Phys. 322, 1587–1634 (2007). arXiv:0704.2798

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. R. Britto, Loop amplitudes in gauge theories: modern analytic approaches. J. Phys. A 44, 454006 (2011). arXiv:1012.4493

    Article  ADS  MathSciNet  Google Scholar 

  40. Z. Bern, Y.-t. Huang, Basics of generalized unitarity. J. Phys. A 44, 454003 (2011). arXiv:1103.1869

    Article  ADS  MathSciNet  Google Scholar 

  41. L.J. Dixon, A brief introduction to modern amplitude methods (2013). arXiv:1310.5353

  42. H. Elvang, Y.-t. Huang, Scattering amplitudes (2013). arXiv:1308.1697

  43. C.F. Berger, et al., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D 78, 036003 (2008). arXiv:0803.4180

    Article  ADS  Google Scholar 

  44. W.T. Giele, G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case. J. High Energy Phys. 0806, 038 (2008). arXiv:0805.2152

    Article  ADS  Google Scholar 

  45. P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Scattering AMplitudes from unitarity-based reduction algorithm at the integrand-level. J. High Energy Phys. 1008, 080 (2010). arXiv:1006.0710

    Article  ADS  Google Scholar 

  46. S. Badger, B. Biedermann, P. Uwer, NGluon: a package to calculate one-loop multi-gluon amplitudes. Comput. Phys. Commun. 182, 1674 (2011). arXiv:1011.2900

    Article  ADS  MATH  Google Scholar 

  47. G. Bevilacqua, M. Czakon, M.V. Garzelli, A. van Hameren, A. Kardos, et al., HELAC-NLO. Comput. Phys. Commun. 184, 986 (2013). arXiv:1110.1499

    Article  ADS  Google Scholar 

  48. G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, et al., Automated one-loop calculations with GoSam. Eur. Phys. J. C 72, 1889 (2012). arXiv:1111.2034

    Article  ADS  Google Scholar 

  49. S. Badger, B. Biedermann, P. Uwer, V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD. Comput. Phys. Commun. 184, 1981–1998 (2013). arXiv:1209.0100

    Article  ADS  Google Scholar 

  50. H. Kleinert, V. Schulte-Frohlinde, Critical Properties of phi**4-Theories (Word Scientific, Singapore, 2001)

    Book  Google Scholar 

  51. K.G. Chetyrkin, F.V. Tkachov, Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl. Phys. B 192, 159 (1981)

    Article  ADS  Google Scholar 

  52. A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation. Phys. Lett. B 254, 158 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  53. A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams. Phys. Lett. B 267, 123 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  54. T. Gehrmann, E. Remiddi, Differential equations for two loop four point functions. Nucl. Phys. B 580, 485 (2000). arXiv:hep-ph/9912329

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. M. Argeri, P. Mastrolia, Feynman diagrams and differential equations. Int. J. Mod. Phys. A 22, 4375 (2007). arXiv:0707.4037

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. C. Anastasiou, A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations. J. High Energy Phys. 0407, 046 (2004). arXiv:hep-ph/0404258

    Article  ADS  Google Scholar 

  57. A.V. Smirnov, Algorithm FIRE—Feynman integral REduction. J. High Energy Phys. 0810, 107 (2008). arXiv:0807.3243

    Article  ADS  Google Scholar 

  58. C. Studerus, Reduze-Feynman integral reduction in C++. Comput. Phys. Commun. 181, 1293 (2010). arXiv:0912.2546

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial x space technique. Nucl. Phys. B 174, 345 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  60. D.I. Kazakov, The method of uniqueness, a new powerful technique for multiloop calculations. Phys. Lett. B 133, 406 (1983)

    Article  ADS  Google Scholar 

  61. O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension. Phys. Rev. D 54, 6479 (1996). arXiv:hep-th/9606018

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. Nucl. Phys. B 830, 474 (2010). arXiv:0911.0252

    Article  ADS  MATH  Google Scholar 

  63. R.N. Lee, A.V. Smirnov, V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ε. Nucl. Phys., Proc. Suppl. 205–206, 308 (2010). arXiv:1005.0362

    Article  Google Scholar 

  64. C. Bogner, S. Weinzierl, Resolution of singularities for multi-loop integrals. Comput. Phys. Commun. 178, 596 (2008). arXiv:0709.4092

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. A.V. Smirnov, M.N. Tentyukov, Feynman integral evaluation by a sector decomposition approach (FIESTA). Comput. Phys. Commun. 180, 735 (2009). arXiv:0807.4129

    Article  ADS  MATH  Google Scholar 

  66. J. Carter, G. Heinrich, SecDec: a general program for sector decomposition. Comput. Phys. Commun. 182, 1566 (2011). arXiv:1011.5493

    Article  ADS  MATH  Google Scholar 

  67. L. Lewin, Structural properties of polylogarithms

    Google Scholar 

  68. K.-T. Chen, Iterated path integrals. Bull. Am. Math. Soc. 83(5), 831 (1997)

    Article  Google Scholar 

  69. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497 (1998). arXiv:1105.2076

    Article  MATH  MathSciNet  Google Scholar 

  70. F. Brown, Iterated integrals in quantum field theory. http://www.math.jussieu.fr/brown/

  71. J. Zhao, Multiple polylogarithms (2013). http://www.maths.dur.ac.uk/events/Meetings/LMS/2013

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henn, J.M., Plefka, J.C. (2014). Loop-Level Structure. In: Scattering Amplitudes in Gauge Theories. Lecture Notes in Physics, vol 883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54022-6_3

Download citation

Publish with us

Policies and ethics