Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 700 Accesses

Abstract

Light-matter interaction is always one of the most critical topics in physics. Thanks to the invention of laser and development of laser technology [1–3], the light intensity has been enormously increased. Nowadays laser pulses with duration at the level of femtosecond (fs, 10−15 s) and peak intensity as high as 1022 W/cm2 are available in laboratories. The laser field is so strong, way beyond the electric field inside atoms, that matter will be ionized immediately after being irradiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–223 (1985)

    ADS  Google Scholar 

  2. M.D. Perry, G.A. Mourou, Terawatt to petawatt subpicosecond laser. Science 264, 917–924 (1994)

    ADS  Google Scholar 

  3. G. Mourou, C.P. Batty, M.D. Perry, Ultrashort intensity lasers: physics of the extreme on a tabtop. Phys. Today 51, 22–24 (1998)

    ADS  Google Scholar 

  4. W. Liu, A brief introduction of plasma physics, pp. 1, (2002) (in chinese)

    Google Scholar 

  5. T. Tajima, G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong field physics. Phys. Rev. ST Accel. Beams 5, 031301 (2002)

    ADS  Google Scholar 

  6. D. Umstadter, Relativistic laser-plasma interactions. J. Phys. D Appl. Phys. 36, R151–R165 (2003)

    ADS  Google Scholar 

  7. Z. Sheng, Relativistic laser-plasma interaction-A lecture in USTC (2006) (in chinese)

    Google Scholar 

  8. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    ADS  Google Scholar 

  9. J.M. Dawson, Nonlinear electron oscillations in a cold plasma. Phys. Rev. 133, 383–387 (1959)

    ADS  Google Scholar 

  10. E. Esarey, A. Ting, P. Sprangle, D. Umstadter, X. Liu, Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95–104 (1993)

    ADS  Google Scholar 

  11. E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252 (1996)

    ADS  Google Scholar 

  12. J.D. Jackson, in Classical Electrodynamics (translated by Peiyu Zhu), vol. 1, (Wiley, Newyork, 1975) p. 241

    Google Scholar 

  13. J.D. Jackson, in Classical Electrodynamics (translated by Peiyu Zhu), vol. 2, (Wiley, Newyork, 1975) pp. 125–128

    Google Scholar 

  14. C.S. Lai, Phys. Rev. Lett. 36, 966–968 (1976)

    ADS  Google Scholar 

  15. W. Yu, M.Y. Yu, Z.M. Sheng, J. Zhang, Model for fast electrons in ultrashort-pulse laser interaction with solid targets. Phys. Rev. E 58, 2456–2460 (1998)

    ADS  Google Scholar 

  16. B. Shen, J. Meyer-ter-Vehn, High-density (>1023/cm3) relativistic electron plasma confined between two laser pulses in a thin foil. Phys. Plasmas 8, 1003–1010 (2001)

    ADS  Google Scholar 

  17. R.E.W. Pfund, R. Lichters, J. Meyer-ter-Vehn, in Super Strong Fields in Plasmas, ed. by M. Lontano et al., AIP Conference Proceedings, vol. 426 (American Institute of Physics, Melville, 1998), p. 141

    Google Scholar 

  18. S. Eliezer, The Interaction of High-Power Lasers With Plasmas (Institute of Physics Publishing, London, 2002)

    Google Scholar 

  19. M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994)

    ADS  Google Scholar 

  20. M. Tabak, D.S. Clark, S.P. Hatchett, M.H. Key, B.F. Lasinski, R.A. Snavely, S.C. Wilks, R.P.J. Town, R. Stephens, E.M. Campbell, R. Kodama, K. Mima, K.A, Tanaka, Review of progress in fast ignition. Phys. Plasmas 12, 057305 (2005)

    Google Scholar 

  21. J. Meyer-ter-Vehn, Fast ignition of ICF targets: an overview. Plasma Phys. Contr. Fusion 43, A113–A118 (2001)

    ADS  Google Scholar 

  22. A. Pukhov, J. Meyer-ter-Vehn, Relativistic magnetic self-channeling of light in near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 3975–3978 (1996)

    ADS  Google Scholar 

  23. A. Pukhov, J. Meyer-ter-Vehn, Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 2686–2689 (1997)

    ADS  Google Scholar 

  24. A. Pukhov, Z.-M. Sheng, J. Meyer-ter-Vehn, Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 2847 (1999)

    ADS  Google Scholar 

  25. Z.-M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma. Phys. Rev. E 69, 016407 (2004)

    ADS  Google Scholar 

  26. M.-C. Firpo, A.F. Lifschitz, E. Lefebvre, C. Deutsch, Early out-of-equilibrium beam-plasma evolution. Phys. Rev. Lett. 96, 115004 (2006)

    ADS  Google Scholar 

  27. J.J. Honrubia, J. Meyer-ter-Vehn, Three-dimensional fast electron transport for ignition-scale inertial fusion capsules. Nucl. Fusion 46, L25–L28 (2006)

    ADS  Google Scholar 

  28. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University, New York, 2004)

    Google Scholar 

  29. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798–802 (2001)

    ADS  Google Scholar 

  30. R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K.M. Krushelnick, K.L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P.A. Norreys, S. Sakabe, K.A. Tanaka, A. Youssef, M. Zepf, T. Yamanaka, Nature 418, 933–934 (2002)

    ADS  Google Scholar 

  31. A.L. Lei, K.A. Tanaka, R. Kodama, G.R. Kumar, K. Nagai, T. Norimatsu, T. Yabuuchi, K. Mima, Optimum hot electron production with low-density foams for laser fusion by fast ignition. Phys. Rev. Lett. 96, 255006 (2006)

    ADS  Google Scholar 

  32. J.M. Dawson, One-dimensional plasma model. Phys. Fluids 5, 445 (1962)

    ADS  MATH  Google Scholar 

  33. W. Yu, H. Xu, F. He, M.Y. Yu, S. Ishiguro, J. Zhang, A.Y. Wong, Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401 (2005)

    ADS  Google Scholar 

  34. G.J. Pert, The analytic theory of linear resonant absorption. Plasma Phys. 20, 175–188 (1978)

    ADS  Google Scholar 

  35. F. Brunel, Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987)

    ADS  Google Scholar 

  36. S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992)

    ADS  Google Scholar 

  37. J. Denavit, Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992)

    ADS  Google Scholar 

  38. J.T. Mendonca, Threshold for electron heating by two electronmagnetic wave. Phys. Rev. A 28, 3592 (1983)

    ADS  Google Scholar 

  39. J.M. Rax, Compton harmonic resonance, stochastic instabilities quasilinear diffusion and collisionless damping with ultrahigh intensity laser waves. Phys. Fluids 4, 3962 (1992)

    Google Scholar 

  40. Z.M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, J. Meyer-ter-Vehn, Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004 (2002)

    ADS  Google Scholar 

  41. A. Pukhov, Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma lab). J. Phys. Plasma 61, 425–433 (1999)

    ADS  Google Scholar 

  42. A. Pukhov, J. Meyer-ter-Vehn, Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasmas 1998, 5 (1880)

    Google Scholar 

  43. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (translated by Baifei Shen), (Oxford University Press, Newyork, 2004) pp. 394

    Google Scholar 

  44. S.V. Blanov, F. Pegoraro, A.M. Pukhov, Two-dimensional regimes of self-focusing, wake field generation, and induced focusing of a short intense laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 710–713 (1995)

    ADS  Google Scholar 

  45. E. Esarey, B. Hafizi, R. Hubbard, A. Ting, Trapping and acceleration in self-modulational laser wakefields. Phys. Rev. Lett. 80, 5552–5555 (1998)

    ADS  Google Scholar 

  46. V. Malka, S. Fritzler, E. Lefebvre, M.M. Aleonard, F. Burgy, J.P. Chambaret, J.F. Chemin, K. Krushelnick, G. Malka, S.P.D. Mangles, Z. Najmudin, M. Pittman, J.P. Rosseau, J.N. Scheurer, B. Walton, A.E. Dangor, Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 1596–1600 (2002)

    ADS  Google Scholar 

  47. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mon, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Nature 431, 535–538 (2004)

    ADS  Google Scholar 

  48. C.G.R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)

    Google Scholar 

  49. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    ADS  Google Scholar 

  50. N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, A. Piskarskas, Multimillijoule chirped parametric amplification of few-cycle pulses. Opt. Lett. 30, 567 (2005)

    Google Scholar 

  51. B. Hidding, K.U. Amthor, B. Liesfeld, H. Schwoerer, S. Karsch, M. Geissler, L. Veisz, K. Schmid, J.G. Gallacher, S.P. Jamison, D. Jaroszynski, G. Pretzler, R. Sauerbrey, Generation of quasimonoenergetic electron bunches with 80 fs laser pulses. Phys. Rev. Lett. 96, 105004 (2006)

    ADS  Google Scholar 

  52. A. Pukhov, J. Meyer-ter-Vehn, Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002)

    ADS  Google Scholar 

  53. I. Kostyukov, A. Pukhov, S. Kiselev, Phenomenological theory of laser-plasma interaction in “bubble” regime. Phys. Plasmas 11, 5256 (2004)

    ADS  Google Scholar 

  54. W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696–699 (2006)

    Google Scholar 

  55. C. Joshi, Plasma accelerators. Sci. Am. 294, 41–47 (2006)

    Google Scholar 

  56. J. Faure, C. Rechantin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006)

    ADS  Google Scholar 

  57. E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle, Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997)

    ADS  Google Scholar 

  58. B. Shen, Y. Li, K. Nemeth, H. Shang, Y. Chae, R. Soliday, R. Crowell, E. Frank, W. Gropp, J. Cary, Electron injection by a nanowire in the bubble regime. Phys. Plasmas 14, 053115 (2007)

    ADS  Google Scholar 

  59. A. Pukhov, Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 3562–3565 (2001)

    ADS  Google Scholar 

  60. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001)

    ADS  Google Scholar 

  61. L. Romagnani, J. Fuchs, M. Borghesi, P. Antici, P. Audebert, F. Ceccherini, T. Cowan, T. Grismayer, S. Kar, A. Macchi, P. Mora, G. Pretzier, A. Schiavi, T. Toncian, O. Willi, Dynamics of electric fields driving the laser acceleration of multi-MeV protons. Phys. Rev. Lett. 95, 195001 (2005)

    ADS  Google Scholar 

  62. S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, M.H. Key, J.A. Koch, A.B. Langdon, B.F. Lasinski, R.W. Lee, A.J. Mackinnon, D.M. Pennington, M.D. Perry, T.W. Phillips, M. Roth, T.C. Sangster, M.S. Singh, R.A. Snavely, M.A. Stoyer, S.C. Wilks, K. Yasuike, Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076–2082 (2000)

    ADS  Google Scholar 

  63. R. Snavely, M. Key, S. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A.A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, M.D. Perry, E.M. Campbell, Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000)

    ADS  Google Scholar 

  64. M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T.E. Cowan, M. Allen, J.C. Gauthier, P. Audebert, J. Fuchs, J. Meyer-ter-Vehn, M. Hegelich, S. Karsch, A. Pukhov, Energetic ions generated by laser pulses: a detailed study on target properties. Phys. Rev. ST Accel. Beams 5, 061301 (2002)

    ADS  Google Scholar 

  65. M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J.C. Gauthier, M. Geissel, P. Audebert, T. Cowan, M. Roth, MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002)

    ADS  Google Scholar 

  66. B.M. Hegelich, Ultra-high intensity laser acceleration of ions to MeV/nucleon energies (Particle accelerator conference, Albuquerque, 2007), pp. 25–29

    Google Scholar 

  67. S.C. Wilks, Simulations of ultraintense laser-plasma interactions. Phys. Fluids B 5, 2603–2608 (1993)

    ADS  Google Scholar 

  68. P. Mora, Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003)

    ADS  Google Scholar 

  69. TZh Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, V.S. Khoroshkov, K. Mima, H. Daido, Y. Kato, Y. Kitagawa, K. Nagai, S. Sakabe, Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003 (2002)

    ADS  Google Scholar 

  70. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernandez, Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441 (2006)

    ADS  Google Scholar 

  71. S.V. Bulanov, V.S. Khoroshkov, Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453–456 (2002)

    ADS  Google Scholar 

  72. H. Schwoerer, S. Pfotenhauer1, O. Jaeckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov, Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445 (2006)

    Google Scholar 

  73. T. Toncian, M. Borghesi, J. Fuchs, E. d’Humieres, P. Antici, P. Audebert, E. Brambrink, C.A. Cecchetti, A. Pipahl, L. Romagnani, O. Willi, Ultrafast-driven microlens to focus and energy-select Mega-Electron-Volt protons. Science 312, 410–413 (2006)

    Google Scholar 

  74. Y. Nodera, S. Kawata, N. Onuma, J. Limpouch, O. Klimo, T. Kikuchi, Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction. Phys. Rev. E 78, 046401 (2008)

    ADS  Google Scholar 

  75. F. Wang, B. Shen, X. Zhang, Z. Jin, M. Wen, L. Ji, W. Wang, J. Xu, M. Yu, J. Cary, High-energy monoenergetic proton bunch from laser interaction with a complex target. Phys. Plasmas 16, 093112 (2009)

    ADS  Google Scholar 

  76. L. Yin, B.J. Albright, B.M. Hegelich, K.J. Browers, K.A. Flippo, T.J.T. Kwan, J.C. Fernandez, Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 14, 056706 (2007)

    ADS  Google Scholar 

  77. J. Zheng, Theory of plasma physics-A lecture in USTC, pp. 110 (“in chinese”)

    Google Scholar 

  78. D.A. Tidman, N.A. Krall, Shock Waves in Collisionless Plasmas (Wiley-Interscience, New York, 1971), pp. 99–112

    Google Scholar 

  79. Y Chen, An introduction of nonlinear plasma physics-A lecture in USTC (“in chinese”)

    Google Scholar 

  80. D.W. Forslund, C.R. Shonk, Formation and structure of electrostatic collisionless shocks. Phys. Rev. Lett. 25, 1699–1702 (1970)

    ADS  Google Scholar 

  81. S.C. Wilks, W.L. Kruer, Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quantum Electron. 33, 1954–1968 (1997)

    ADS  Google Scholar 

  82. J. Denavit, Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052–3055 (1992)

    ADS  Google Scholar 

  83. L.O. Silva, M. Marti, J.R. Davis, R.A. Fonseca, Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002 (2004)

    ADS  Google Scholar 

  84. H. Habara, K.L. Lancaster, S. Karsch, C.D. Murphy, P.A. Norreys, R.G. Evans, M. Borghesi, L. Romagnani, M. Zepf, T. Norimatsu, Y. Toyama, R. Kodama, J.A. King, R. Snavely, K. Akli, B. Zhang, R. Freeman, S. Hatchett, A.J. MacKinnon, P. Patel, M.H. Key, C. Stoeckl, R.B. Stephens, R.A. Fonseca, L.O. Silva, Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions. Phys. Rev. E 70, 046414 (2004)

    ADS  Google Scholar 

  85. M. Chen, Z. Sheng, Q. Dong, M. He, Y. Li, M.A. Bari, J. Zhang, Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas. Phys. Plasmas 14, 053102 (2007)

    ADS  Google Scholar 

  86. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94, 165003 (2005)

    Google Scholar 

  87. X. Zhang, B. Shen, X. Li, Z. Jin, F. Wang, M. Wen, Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Phys. Plasmas 14, 123108 (2007)

    ADS  Google Scholar 

  88. X. Zhang, B. Shen, Z. Jin, F. Wang, L. Ji, Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse. Phys. Plasmas 16, 033102 (2009)

    ADS  Google Scholar 

  89. X. Zhang, B. Shen, X. Li, Z. Jin, F. Wang, Multi-staged acceleration of ions by circularly polarized laser pulse: monoenergetic ion beam generation. Phys. Plasmas 14, 073101 (2007)

    ADS  Google Scholar 

  90. B. Shen, Z. Xu, Transparency of an overdense plasma layer. Phys. Rev. E 64, 056406 (2001)

    ADS  Google Scholar 

  91. X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003 (2008)

    ADS  Google Scholar 

  92. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175001 (2004)

    ADS  Google Scholar 

  93. A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)

    ADS  Google Scholar 

  94. M. Chen, A. Pukhov, Z.M. Sheng, X.Q. Yan, Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Phys. Plasmas 15, 113103 (2008)

    ADS  Google Scholar 

  95. X.Q. Yan, H.C. Wu, Z.M. Sheng, J.E. Chen, J. Meyer-ter-Vehn, Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7e21 W/cm2. Phys. Rev. Lett. 103, 135001 (2009)

    ADS  Google Scholar 

  96. B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002 (2009)

    ADS  Google Scholar 

  97. T.P. Yu, A. Pukhov, G. Shvets, M. Chen, Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil. Phys. Rev. Lett. 105, 065002 (2010)

    ADS  Google Scholar 

  98. B. Shen. Y. Li, M.Y. Yu, J. Cary, Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E 76, 055402(R) (2007)

    Google Scholar 

  99. B. Shen, X. Zhang, Z. Sheng, M.Y. Yu, J. Cary, High-quality monoenergetic proton generation by sequential radiation pressure and bubble acceleration. Phys. Rev. ST Accel. Beams 12, 121301 (2009)

    ADS  Google Scholar 

  100. X. Zhang, B. Shen, L. Ji, F. Wang, M. Wen, W. Wang, J. Xu, Y. Yu, Ultrahigh energy proton generation in sequential radiation pressure and bubble regime. Phys. Plasmas 17, 123102 (2010)

    ADS  Google Scholar 

  101. L.L. Yu, H. Xu, W.M. Wang, Z.M. Sheng, B.F. Shen, W. Yu, J. Zhang, Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021–1023 Wcm−2. New J. Phys. 12, 045021 (2010)

    ADS  Google Scholar 

  102. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Isolated single-cycle attosecond pulse. Science 314, 443–446 (2006)

    ADS  Google Scholar 

  103. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    ADS  Google Scholar 

  104. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S.D. Khan, M. Chini, Y. Wu, K. Zhao, Z. Chang, Generation of isolated attosecond pulses with 20–28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009)

    ADS  Google Scholar 

  105. S.V. Bulanov, N.M. Naumova, F. Pegoraro, Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994)

    ADS  Google Scholar 

  106. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996)

    ADS  Google Scholar 

  107. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Relativistic Doppler effect: universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004)

    ADS  Google Scholar 

  108. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)

    ADS  Google Scholar 

  109. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009)

    ADS  Google Scholar 

  110. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. Mckenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007)

    ADS  Google Scholar 

  111. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, High harmonic generation in the relativistic limit. Nat. Phys. 2, 456–459 (2006)

    Google Scholar 

  112. B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S.G. Rykovanov, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5, 146–152 (2009)

    Google Scholar 

  113. L. Plaja, L. Roso, K. Rzazewski, M. Lewenstein, Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface. J. Opt. Soc. Am. B 15, 1904–1911 (1998)

    ADS  Google Scholar 

  114. N.M. Naumova, J.A. Nees, I.V. Sokolov, B. Hou, G.A. Mourou, Relativistic generation of isolated attosecond pulse in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004)

    ADS  Google Scholar 

  115. N.M. Naumova, J.A. Nees, G.A. Mourou, Relativistic attosecond physics. Phys. Plasmas 12, 056707 (2005)

    ADS  Google Scholar 

  116. T. Baeva, S. Gordienko, A. Pukhov, Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74, 065401(R) (2006)

    ADS  Google Scholar 

  117. L. Liu, C. Xia, J. Liu, W. Wang, Y. Cai, C. Wang, R. Li, Z. Xu, Control of single attosecond pulse generation from the reflection of a synthesized relativistic laser pulse on a solid surface. Phys. Plasmas 15, 103107 (2008)

    ADS  Google Scholar 

  118. S.G. Rykovanov, M. Geissler, J. Meyer-ter-Vehn, G.D. Tsakiris, Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025 (2008)

    ADS  Google Scholar 

  119. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94(103903), 1 (2005)

    Google Scholar 

  120. YuM Mikhailova, V.T. Platonenko, S.G. Rykovanov, Generation of an attosecond x-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse. JETP Lett. 81, 571–574 (2005)

    ADS  Google Scholar 

  121. A.S. Pirozhkov, S.V. Bulanov, T.Z. Esirkepov, M. Mori, A. Sagisaka, H. Daido, Attosecond pulse generation in the relativistic regime of the laser-foil interaction: the sliding mirror model. Phys. Plasmas 13, 013107 (2006)

    ADS  Google Scholar 

  122. D. an der Brügge, A. Pukhov, Enhanced relativistic harmonics by electron nanobunching. Phys. Plasmas 17, 033110, (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Ji .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ji, L. (2014). Introduction. In: Ion acceleration and extreme light field generation based on ultra-short and ultra–intense lasers. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54007-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54007-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54006-6

  • Online ISBN: 978-3-642-54007-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics