Skip to main content

Calcium Phosphate Derived from Foraminifera Structures as Drug Delivery Systems and for Bone Tissue Engineering

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 2))

Abstract

Currently there is an urgent need to develop an appropriate slow drug delivery system to sustain the local and targeted release of the drug to increase therapeutic efficacy while reducing side effects. In this study, a novel drug delivery system by means of hydrothermally converting marine exoskeletons to β-tricalcium phosphate was investigated. The in vitro dissolution of key chemical compositional elements and the release of drugs such as simvastatin and antibiotics were measured. Coating of these Foraminifera shells with an apatitic bone cement material reduced the dissolution rate by 50 % compared with control samples. This study shows the potential applications of marine structure-derived calcium phosphates as efficient local drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4):1401–1421. doi:10.1016/j.actbio.2011.11.017

    Article  Google Scholar 

  2. Fuhrman J, McCallum K, Davis A (1995) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl Environ Microbiol 61(12):4517

    Google Scholar 

  3. Rossbach M, Kniewald G (1997) Concepts of marine specimen banking. Chemosphere 34(9–10):1997–2010

    Article  Google Scholar 

  4. Leupold J, Barfield W, An Y, Hartsock L (2006) A comparison of ProOsteon, DBX, and collagraft in a rabbit model. J Biomed Mater Res B Appl Biomater 79(2):292–297. doi:10.1002/jbm.b.30541

    Article  Google Scholar 

  5. Luesch H, Harrigan G, Goetz G, Horgen F (2002) The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem 9(20):1791–1806

    Article  Google Scholar 

  6. Pettit G, Xu J, Hogan F, Williams M, Doubek D, Schmidt J et al (1997) Isolation and structure of the human cancer cell growth inhibitory cyclodepsipeptide dolastatin 16. J Nat Prod 60(8):752–754. doi:10.1021/np9700230

    Article  Google Scholar 

  7. Simmons T, Coates R, Clark B, Engene N, Gonzalez D, Esquenazi E et al (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci U S A 105(12):4587–4594. doi:10.1073/pnas.0709851105

    Article  Google Scholar 

  8. Simmons T, Andrianasolo E, McPhail K, Flatt P, Gerwick W (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4(2):333–342

    Google Scholar 

  9. Sithranga Boopathy N, Kathiresan K (2010) Anticancer drugs from marine flora: an overview. J Oncol 2010. doi:10.1155/2010/214186

  10. Stanley G (2003) The evolution of modern corals and their early history. Earth Sci Rev 60(3–4):195–225

    Article  Google Scholar 

  11. Sethmann I, Worheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39(3):209–228

    Article  Google Scholar 

  12. Wilt F, Kilian C, Livingston B (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71(4–5):237–250

    Article  Google Scholar 

  13. Laine J, Labady M, Albornoz A, Yunes S (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59(10):1522–1525

    Article  Google Scholar 

  14. Chou J, Valenzuela S, Bishop D, Ben-Nissan B, Milthorpe B (2012) Strontium- and magnesium-enriched biomimetic beta-TCP macrospheres with potential for bone tissue morphogenesis. J Tissue Eng Regen Med. doi:10.1002/term.1576/

    Google Scholar 

  15. Demers C, Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35

    Google Scholar 

  16. Baudet-Pommel M, Collangettes-Peyrat D, Couvet-Lejczyk V (1988) Autotransplantation: clinical results, radiography, orthodontics, criteria for success. Actual Odontostomatol 163:463–472 (Paris: In French)

    Google Scholar 

  17. Patat J, Guillemin G (1989) Natural coral used as a replacement biomaterial in bone grafts. Ann Chir Plast Esthet 34(3):221–225 (French)

    Google Scholar 

  18. Bonnelye E, Chabadel A, Saltel F, Jurdic P (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138. doi:10.1016/j.bone.2007.08.043

    Article  Google Scholar 

  19. LeGeros R (1981) Apatites in biological systems. Prog Cryst Growth Character Mater 41(1–2):1–45

    Article  Google Scholar 

  20. Papacharalambous S, Anastasoff K (1993) Natural coral skeleton used as onlay graft for contour augmentation of the face-A preliminary report. Int J Oral Maxillofac Surg 22(5):260–264

    Article  Google Scholar 

  21. Ben-Nissan B (2003) Natural bioceramic: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7(4–5):283–288

    Article  Google Scholar 

  22. Chou J, Ben-Nissan B, Choi A, Wuhrer R, Green D (2007) Conversion of coral sand to calcium phosphate for biomedical application. J Aust Ceram Soc 43(1):44–48

    Google Scholar 

  23. Ben-Nissan B, Milev A, Vago R (2004) Morphology of sol-gel derived nano-coated coralline hydroxyapatite. Biomaterials 25(20):4971–4975

    Article  Google Scholar 

  24. Roy D, Linnehan S (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247(438):220–222

    Article  Google Scholar 

  25. Damron T, Lisle J, Craig T, Wade M, Silbert W, Cohen H (2013) Ultraporous beta-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. J Bone Joint Surg Am 95(2):158–166. doi:10.2106/JBJS.K.00181

    Article  Google Scholar 

  26. Guyton G, Miller S (2010) Stem cells in bone grafting: trinity allograft with stem cells and collagen/beta-tricalcium phosphate with concentrated bone marrow aspirate. Foot Ankle Clin 15(4):611–619. doi:10.1016/j.fcl.2010.09.003

    Article  Google Scholar 

  27. Barber F, Dockery W (2008) Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws. Arthroscopy 24(4):441–447. doi:10.1016/j.arthro.2007.10.004

    Article  Google Scholar 

  28. Somanathan R, Simunek A (2006) Evaluation of the success of beta-tricalcium phosphate and deproteinized bovine bone in maxillary sinus augmentation using histomorphometry: a review. Acta Medica 49(2):87–89

    Google Scholar 

  29. Florczyk S, Leung M, Jana S, Li Z, Bhattarai N, Huang J et al (2012) Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J Biomed Mater Res A 100(12):3408–3415. doi:10.1002/jbm.a.34288

    Article  Google Scholar 

  30. Zhou J, Fang T, Wang Y, Dong J (2012) The controlled release of vancomycin in gelatin/beta-TCP composite scaffolds. J Biomed Mater Res A 100(9):2295–2301. doi:10.1002/jbm.a.34170

    Google Scholar 

  31. La W, Kwon S, Lee T, Yang H, Park J, Kim B (2012) The effect of the delivery carrier on the quality of bone formed via bone morphogenetic protein-2. Artif Organs 36(7):642–647. doi:10.1111/j.1525-1594.2011.01420.x

    Article  Google Scholar 

  32. Suarez-Gonzalez D, Lee J, Lan Levengood S, Vanderby RJ, Murphy W (2012) Mineral coatings modulate beta-TCP stability and enable growth factor binding and release. Acta Biomater 8(3):1117–1124. doi:10.1016/j.actbio.2011.11.028

    Article  Google Scholar 

  33. Paschalis E, Wikiel K, Nancollas G (1994) Dual constant composition kinetics characterization of apatitic surfaces. J Biomed Mater Res 28(12):1411–1418. doi:10.1002/jbm.820281205

    Article  Google Scholar 

  34. Tang R, Hass M, Wu W, Gulde S, Nancollas G (2003) Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. J Colloid Interface Sci 260(2):379–384

    Article  Google Scholar 

  35. LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14(3):201–209

    Article  Google Scholar 

  36. Chou J, Ito T, Bishop D, Otsuka M, Ben-Nissan B, Milthorpe B (2013) Controlled release of simvastatin from biomimetic beta-TCP drug delivery system. PLoS One 8(1):e54676. doi:10.1371/journal.pone.0054676

    Article  Google Scholar 

  37. Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B (2013) The effectiveness of the controlled release of simvastatin from β-TCP macrosphere in the treatment of OVX mice. J Tissue Eng Regen Med. doi:10.1002/term.1784

  38. Chou J, Ito T, Otsuka M, Ben-Nissan B, Milthorpe B (2012) Simvastatin loaded β-TCP drug delivery system induces bone formation and prevents rhabdomyolysis in OVX mice. Adv Healthc Mater. doi:10.1002/adhm.201200342

    Google Scholar 

  39. Chou J, Ben-Nissan B, Green D, Valenzuela S, Kohan L (2010) Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of micro-spherical shells from coral beach sand. Adv Eng Mater 13(1–2):93–99

    Google Scholar 

  40. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N et al (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50(2):184–190

    Article  Google Scholar 

  41. Relea P, Revilla M, Ripoll E, Arribas I, Villa LF, Rico H (1995) Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing 24(4):303–307

    Article  Google Scholar 

  42. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36(22):4007–4012

    Article  Google Scholar 

  43. Moonga B, Dempster D (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10(3):453–457. doi:10.1002/jbmr.5650100317

    Article  Google Scholar 

  44. Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez A, Guillen Ade J et al (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 4(3):237–240. doi:10.1016/j.nano.2008.04.005

    Article  Google Scholar 

  45. Chou J, Hao J, Hatoyama H, Ben-Nissan B, Milthorpe B, Otsuka M (2013) The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP) in zinc-deficient osteoporotic mice. PLoS One. doi:10.1371/journal.pone.0071821

  46. Chou J, Hao J, Kuroda S, Ben-Nissan B, Milthorpe B, Otsuka M (2013) Bone regeneration of rat tibial defect by zinc-tricalcium phosphate (Zn-TCP) from porous Foraminifera carbonate macrospheres. Mar Drugs 11(12):5148–5158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chou, J., Hao, J., Ben-Nissan, B., Milthorpe, B., Otsuka, M. (2014). Calcium Phosphate Derived from Foraminifera Structures as Drug Delivery Systems and for Bone Tissue Engineering. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_14

Download citation

Publish with us

Policies and ethics