Skip to main content

Nanocrystalline Apatite-Based Biomaterials and Stem Cells in Orthopaedics

  • Chapter
  • First Online:
Advances in Calcium Phosphate Biomaterials

Abstract

Nanocrystalline apatite-based biomaterials and stem cells are emerging research fields in orthopaedic surgery and traumatology that have the potential of improving quality of life of the elderly and enhance health-related socio-economic challenges. Nanocrystalline apatite-based biomaterials and especially calcium phosphate nano-biomaterials exploit new physical, chemical and biological properties that have the possibility to increase surface area and improve tissue integration. Stem cells of adult origin decrease inflammation, increase vascularity and are able to replace degenerated tissue cells during the process of regeneration. The bone is the only human tissue that regenerates. Musculoskeletal disorders including osteoporotic fractures and osteoarthritis decrease quality of life in the elderly and cause severe burden on economics. Nanocrystalline calcium phosphate bioceramics have the ability to prevent or treat osteoporotic fractures when combined with stem cells. These biomaterials may also be used for drug delivery purposes to treat bone infections when combined with stem cell as they can assist in treating osteoarthritis. Current research challenges are trying to overcome the toxicity and carcinogenesis with these cells and nanomaterials. Long-term stability of these cells and materials is another challenge for these materials. This chapter deals with nanocrystalline calcium phosphate bioceramics and mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  Google Scholar 

  2. Korkusuz F, Tomin E, Yetkiner DN, Timuçin M, Öztürk A, Korkusuz P (2011) Synthetic bone grafts. TOTBID Dergisi 10:134–142

    Google Scholar 

  3. Korkusuz F, Senköylü A, Korkusuz P (2003) Hard tissue-implant interactions-2: bone-ceramic and bone-polymer interactions. Eklem Hastalik Cerr (formerly J Arthroplast Arthrosc Surg) 14:109–125

    Google Scholar 

  4. Demirkiran H (2012) Bioceramics for osteogenesis, molecular and cellular advances. Adv Exp Med Biol 760:134–147

    Article  Google Scholar 

  5. Beck RT, Illingworth KD, Saleh KJ (2012) Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res 30(4):541–546

    Article  Google Scholar 

  6. Catledge SA, Fries MD, Vohra YK, Lacefield WR, Lemons JE, Woodard S, Venugopalan R (2002) Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol 2(3–4):293–312

    Article  Google Scholar 

  7. Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16(5):405–409

    Article  Google Scholar 

  8. Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6(3):715–734

    Article  Google Scholar 

  9. Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13(1):97–117

    Google Scholar 

  10. Hayek E, Newesely H (1963) Pentacalcium monohydroxyorthophosphate. Inorg Synth 7:63–65

    Google Scholar 

  11. Tas AC, Korkusuz F, Timucin M, Akkas N (1997) An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) ceramics. J Mater Sci Mater Med 8:91–96

    Article  Google Scholar 

  12. Choi D, Kumta PN (2006) An alternative chemical route for the synthesis and thermal stability of chemically enriched hydroxyapatite. J Am Ceram Soc 89(2):444–449

    Article  Google Scholar 

  13. Morales JG, Burgues JT, Boix T, Fraile J, Clemente RR (2001) Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst Res Technol 36(1):15–26

    Article  Google Scholar 

  14. Sarig S, Kahana F (2002) Rapid formation of nanocrystalline apatite. J Cryst Growth 237–239:55–59

    Article  Google Scholar 

  15. Layrolle P, Ito A, Tateishi T (1998) Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J Am Ceram Soc 81(6):1421–1428

    Article  Google Scholar 

  16. Varma HK, Babu SS (2005) Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int 31:109–114

    Article  Google Scholar 

  17. Agrawal K, Singh G, Puri D, Prakash S (2011) Synthesis and characterization of hydroxyapatite powder by sol-gel method for biomedical application. J Miner Mater Char Eng 10(8):727–734

    Google Scholar 

  18. Akao M, Aoki H, Kato K (1981) Mechanical properties of sintered hydroxyapatite for prosthetic applications. J Mater Sci 16:809–812

    Article  Google Scholar 

  19. Vakıfahmetoglu C, Park J, Korkusuz F, Ozturk A, Timucin M (2009) Production and properties of apatite-wollastonite ceramics for biomedical applications. Interceram 58(2–3):86–90

    Google Scholar 

  20. Gibson IR, Best SM, Bonfield W (1999) Chemical characterisation of silicon substituted hydroxyapatite. J Biomed Mater Res 44(4):422–428

    Article  Google Scholar 

  21. Gibson IR, Best SM, Bonfield W (2002) Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. J Am Ceram Soc 85(11):2771–2777

    Article  Google Scholar 

  22. Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032

    Article  Google Scholar 

  23. Izci Y, Seçer HI, Ilica AT, Karaçalioglu O, Onguru O, Timuçin M, Korkusuz F (2012) The efficacy of bioceramics for the closure of burr-holes in craniotomy: case studies on 14 patients. J Appl Biomater Funct Mater 11:e187–e196. doi:10.5301/JABFM.2012.9252

    Google Scholar 

  24. Lin K, Zhai W, Ni S et al (2005) Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int 31:323–326

    Article  Google Scholar 

  25. Arpınar P, Şimsek B, Sezgin OC, Birlik G, Korkusuz F (2005) Correlation between mechanical vibration analysis and dual energy X-ray absorptiometry (DXA) in the measurement of in vivo human tibial bone strength. Technol Health Care 13:107–113

    Google Scholar 

  26. Bediz B, Özgüven HN, Korkusuz F (2010) Vibration measurements predict the mechanical properties of human tibia. Clin Biomech 25:365–371

    Article  Google Scholar 

  27. Atik OS, Gunal I, Korkusuz F (2006) Burden of osteoporosis. Clin Orthop Relat Res 443:19–24

    Article  Google Scholar 

  28. Muratli HH, Korkusuz F, Korkusuz P, Bicimoglu A, Ercan ZS (2007) Bosentan, a non-specific endothelin antagonist, stimulates fracture healing. Biomedical engineering: application. Basis Commun 19:37–46

    Article  Google Scholar 

  29. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    Article  Google Scholar 

  30. Steinert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS (2012) Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 1:237–247

    Article  Google Scholar 

  31. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  Google Scholar 

  32. Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23:2593–2606

    Article  Google Scholar 

  33. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  Google Scholar 

  34. McMahon RE, Wang L, Skoracki R, Mathur AB (2013) Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 101:387–397

    Article  Google Scholar 

  35. Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176

    Article  Google Scholar 

  36. Park KH, Kim H, Moon S, Na K (2009) Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng 108:530–537

    Article  Google Scholar 

  37. Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J (2010) Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A95:973–981

    Article  Google Scholar 

  38. Lock J, Nguyen TY, Liu H (2012) Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J Mater Sci Mater Med 23:2543–2552

    Article  Google Scholar 

  39. Cheng Z, Guo C, Dong W, He FM, Zhao SF, Yang GL (2012) Effect of thin nano-hydroxyapatite coating on implant osseointegration in ovariectomized rats. Oral Surg Oral Med Oral Pathol Oral Radiol 113:e48–e53

    Article  Google Scholar 

  40. Fox K, Tran PA, Tran N (2012) Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem 13:2495–2506

    Article  Google Scholar 

  41. Yamada M, Ueno T, Tsukimura N, Ikeda T, Nakagawa K, Hori N, Suzuki T, Ogawa T (2012) Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomedicine 7:859–873

    Google Scholar 

  42. Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater 99:258–265

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Duygu Uçkan Çetinkaya MD, PhD, and Sevil Arslan MSc of Hacettepe University Faculty of Medicine, PediSTEM Stem Cell Research Center, for their contribution to MSC studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feza Korkusuz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korkusuz, F., Timuçin, M., Korkusuz, P. (2014). Nanocrystalline Apatite-Based Biomaterials and Stem Cells in Orthopaedics. In: Ben-Nissan, B. (eds) Advances in Calcium Phosphate Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53980-0_12

Download citation

Publish with us

Policies and ethics