Advertisement

Experimental Proof of Steady-State Non-Fourier Heat Conduction

  • Hai-Dong WangEmail author
Chapter
  • 705 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

It was discussed in Chap.  2 that the non-negligible thermomass inertia will cause non-Fourier heat conduction in steady states, for example, the heat flow choking phenomenon. In this chapter, the experimental evidence is given for the steady non-Fourier heat conduction under the ultra-high heat flux and low temperature conditions. As the foundation of the theoretical prediction, the electrical and thermal conductivities of the metallic nanofilms have been accurately measured in a wide temperature range. Meanwhile, the breakdown of Wiedemann–Franz law at low temperatures is observed in the experiment.

Keywords

Mean Free Path Boltzmann Transport Equation Boundary Scattering Lorenz Number Average Temperature Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q.G. Zhang, B.Y. Cao, X. Zhang, M. Fujii, K. Takahashi, Size effects on the thermal conductivity of polycrystalline platinum nanofilms. J. Phys. Condens. Matter 18, 7937–7950 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Phil. Soc. 34, 100–108 (1938)ADSCrossRefGoogle Scholar
  3. 3.
    E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952)ADSCrossRefGoogle Scholar
  4. 4.
    J.W.C. De Vries, Temperature and thickness dependence of the resistivity of thin polycrystalline aluminum, cobalt, nickel, palladium, silver and gold films. Thin Solid Films 167, 25–32 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    A.F. Mayadas, M. Shatzkes, J.F. Janak, Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl. Phys. Lett. 14(11), 345–347 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1(4), 1382–1389 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    W. Kappus, O. Weis, Radiation temperature and radiation power of thermal phonon radiators using diamond as transmission medium. J. Appl. Phys. 44(5), 1947–1952 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    C.R. Tellier, A.J. Tosser, The temperature coefficient of resistivity of polycrystalline radio frequency sputtered aluminum films. Thin Solid Films 43, 261–266 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-layer metalsłi. analysis. Int. J. Heat Mass Transfer 37(17), 2789–2797 (1994)CrossRefGoogle Scholar
  10. 10.
    T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-layer metalsłi. experiments. Int. J. Heat Mass Transfer 37(17), 2799–2808 (1994)CrossRefGoogle Scholar
  11. 11.
    A. Vedavarz, K. Mitra, S. Kumar, Hyperbolic temperature profiles for laser surface interactions. J. Appl. Phys. 76(9), 5014–5021 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Ziman, Electrons and phonons, the theory of transport phenomena in solids, vol. 260 (Clarendon, Oxford, 1960)zbMATHGoogle Scholar
  13. 13.
    C.L. Tien, A. Majumdar, F.M. Gerner, Microscale energy transport, vol. 28 (Taylor & Francis, Washington DC, 1997)Google Scholar
  14. 14.
    N. Stojanovic, D.H.S. Maithripala, J.M. Berg, M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the wiedemann franz law. Phys. Rev. B 82, 075418 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A. Smekal, Zur quantentheorie der dispersion. Naturwissenschaften 11, 873 (1923)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Kramers, W. Heisenberg, Inverse raman spectra: induced absorption at optical frequencies. Z. Phys. 31, 681 (1925)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Ann. Phys. 81, 109 (1926)CrossRefzbMATHGoogle Scholar
  18. 18.
    P.A.M. Dirac, Two-photon processes in complex atoms. Proc. Roy. Soc. Lon. A 114, 710 (1927)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501 (1928)ADSCrossRefGoogle Scholar
  20. 20.
    G. Landsberg, L. Mandelstam, Eine neue erscheinung bei der lichtzerstreuung. Naturwissenschaften 16, 557 (1928)CrossRefGoogle Scholar
  21. 21.
    G. Wiedemann, R. Franz, Ueber die wärme-leitungsfähigkeit der metalle. Ann. Phys. Chem. 89, 497 (1853)Google Scholar
  22. 22.
    A. Sommerfeld, Zur elektronentheorie der metalle auf grund der fermischen statistic. Naturwissenschaften 15, 825 (1927)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    E.W. Fenton, J.S. Rogers, S.B. Woods, Lorenz numbers of pure aluminum, silver, and gold at low temperatures. Can. J. Phys. 41, 2026 (1963)ADSCrossRefGoogle Scholar
  24. 24.
    G.K. White, R.J. Tainsh, Electron scattering in nickel at low temperatures. Phys. Rev. Lett. 19, 165 (1967)ADSCrossRefGoogle Scholar
  25. 25.
    G.S. Kumar, G. Prasad, R.O. Pohl, Review, experimental determinations of the Lorenz number. J. Mater. Sci. 28, 4261–4272 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    C.R. Tellier, L. Ouarbya, A.J. Tosser, Effects of electron scatterings on thermal conductivity of thin metal films. J. Mater. Sci. 16, 2287 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    W.G. Ma, H.D. Wang, X. Zhang, K. Takahashi, Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms. Chin. Phys. B 18, 2035 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    H.D. Wang, J.H. Liu, X. Zhang, Z.Y. Guo, K. Takahashi, Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms. Heat Mass Transfer 47, 893–898 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations