Advertisement

Experimental Investigation of Thermal Wave and Temperature Wave

  • Hai-Dong WangEmail author
Chapter
  • 689 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The non-negligible thermomass inertia effect results in the non-Fourier heat conduction under the extreme conditions. In this chapter, the experimental study on the transient thermal wave and temperature wave will be discussed in detail. The propagation speed of temperature wave has been measured using a femtosecond laser thermoreflectance system. Meanwhile, the other parameters of the metallic nanofilms, such as electron–phonon coupling factor, thermal contact resistance, have been obtained.

Keywords

Electron Temperature Femtosecond Laser Propagation Speed Probe Beam Pump Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Khitrova, P.R. Berman, M. Sargent, Theory of pump-probe spectroscopy. J. Opt. Soc. Am. B 5(1), 160–170 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    P.E Hopkins, P.M. Norris , L.M. Phinney, S.A. Policastro, R.G. Kelly, Thermal conductivity in nanoporous gold films during electron-phonon nonequilibrium. J. Nanomater. 2008, 418050 (2008)Google Scholar
  3. 3.
    R. Rosei, D.W. Lynch, Thermomodulation spectra of al, au, and cu. Phys. Rev. B 5(10), 3883–3894 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    P.E. Hopkins, P.M. Norris, Substrate influence in electron-phonon coupling measurements in thin au films. Appl. Surf. Sci. 253, 6289–6294 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K. Huang, Solid State Physics (Higher Education Press, Beijing, 1988) (in Chinese)Google Scholar
  6. 6.
    J.S. Zhang, J.S. Zheng, X.P. Wan, Lock-in techniques (Xian University of Electronic Science and Technology of China Press, Xian, 1994) (in Chinese)Google Scholar
  7. 7.
    E.R.G. Eckert, Heat and Mass Transfer (McGraw-Hill, New York, 1959)Google Scholar
  8. 8.
    H.Y. Zhang, S.G. Wu, Femtosecond laser induced film damage mechanical process. Acta Phys. Sin. 56(9), 5314–5317 (2007)Google Scholar
  9. 9.
    M.J. Maurer, Relaxation model for heat conduction in metals. J. Appl. Phys. 40(13), 5123–5130 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    M.J. Maurer, H.A. Thompson, Non-fourier effects at high heat flux. J. Heat Transfer 95(2), 284–286 (1973)CrossRefGoogle Scholar
  11. 11.
    S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold-films. Phys. Rev. Lett. 59(17), 1962–1965 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Lee, D.G. Cahill, Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A.R. Joseph, C.L. John, D.J. Stephen, Subsurface damage in some single crystalline optical materials. Appl. Opt. 44(12), 2241–2249 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Orain, Y. Scudeller, S. Garcia, T. Brousse, Use of genetic algorithms for the simultaneous estimation of thin films thermal conductivity and contact resistances. Int. J. Heat Mass Transfer 44(20), 3973–3984 (1972)CrossRefGoogle Scholar
  15. 15.
    D.L. Balageas, J.C. Krapez, P. Cielo, Pulsed photothermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    P. Hui, H.S. Tan, A transmission-line theory for heat conduction in multilayer thin films. Compon. Packag. Manuf. Technol. Part B: Adv. Packag. 17(3), 426–434 (1994)CrossRefGoogle Scholar
  17. 17.
    J.K. Chen, W.P. Latham, J.E. Beraun, The role of electroncphonon coupling in ultrafast laser heating. J. Laser Appl. 17(1), 63–68 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Majumdar, P. Reddy, Role of electroncphonon coupling in thermal conductance of metalcnonmetal interfaces. Appl. Phys. Lett. 84(23), 4768–4770 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Z.B. Ge, D.G. Cahill, P.V. Braun, Thermal conductance of hydrophilic and hydrophobic interfaces. Phys. Rev. Lett. 96(18), 186101 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M.L. Roukes, M.R. Freeman, R.S. Germain et al., Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55(4), 422–425 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977)zbMATHGoogle Scholar
  22. 22.
    S. Garcia, J. Guynn, E.P. Scott, Use of genetic algorithms in thermal property estimation: Part ii simultaneous estimation of thermal properties. Numer. Heat Transfer 33, 149–168 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning(Addison-Wesley, MA, 1989)Google Scholar
  24. 24.
    T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993)CrossRefGoogle Scholar
  25. 25.
    M.I. Flik, P.E. Phelan, C.L. Tien, Thermal model for the bolometric response of high tc superconducting films to optical pulses. Cryogenics 30(12), 1118–1128 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    D. Sakami, A. Lahmar, Y. Scudeller, F. Danes, J.P. Bardon, Thermal contact resistance and adhesion studies on thin copper films on alumina substrates. J. Adhes. Sci. Technol. 15(12), 1403–1416 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations