Thermomass Theory for Non-Fourier Heat Conduction

  • Hai-Dong WangEmail author
Part of the Springer Theses book series (Springer Theses)


With the rapid development of femtosecond laser and micro/nano processing techniques, researchers face great challenges in thermal management and analysis under the extreme conditions. As the theoretical basis of heat transfer, Fourier’s law may break down at femtosecond temporal scales and nanometer spatial scales. In 1822, Fourier stated in his book “Analytical theory of heat” that the mechanical principles could not be applied to study the thermal phenomenon, which used concepts that differed from other fields of study [1]. But the heat transport in metals can be analogous to the charge transport according to the Wiedemann–Franz (WF) law [2], it shows internal connection between thermal science and other branches of physics. Guo has developed a novel thermomass theory to analyze the heat conduction using Newtonian mechanics [3], creating a new path for thermal analysis under the extreme conditions.


Thermal Wave Critical Heat Flux Internal Heat Source Damp Wave Equation Heat Conduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Fourier, Analytical Theory of Heat (Dover Publications, New York, 1955)zbMATHGoogle Scholar
  2. 2.
    G.V. Chester, A. Thellung, The law of Wiedemann and Franz. Proc. Phys. Soc. 77(5), 309 (1961)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Z.Y. Guo, Movement and transport of thermomass–thermomass and thermon gas. J. Eng. Thermophys. 27(4), 631–634 (2006). (in Chinese)Google Scholar
  4. 4.
    Z.Y. Guo, B.Y. Cao, H.Y. Zhu, Q.G. Zhang, State equation of phonon gas and its movement conservation equation. Acta Phys. Sinica 56(6), 3306–3312 (2007)Google Scholar
  5. 5.
    A.L. Lavoisier, Chemical Basis of Theory. (Peking University Press, Beijing, 2008). (in Chinese)Google Scholar
  6. 6.
    I. Müller, A History of Thermodynamics: The Doctrine of Energy and Entropy. (Springer, New York, 2007)Google Scholar
  7. 7.
    W.F. Magie, A Source Book in Physics (McGraw-Hill, New York, 1935)Google Scholar
  8. 8.
    H.D. Wang, Z.Y. Guo, Thermon gas–heat carriers in gas and metals. Chin. Sci. Bull. 55(1), 1–7 (2010)CrossRefGoogle Scholar
  9. 9.
    L. Onsager, Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931)ADSCrossRefGoogle Scholar
  10. 10.
    Q.G. Zhang, B.Y. Cao, Z.Y. Guo, Movement and transport of thermomass-state equation of thermon gas. J. Eng. Thermophys. 27, 908–910 (2006). (in Chinese)Google Scholar
  11. 11.
    S.K. Ratkje, P.C. Hemmer, H. Holden, The Collected Works of Lars Onsager: With Commentary. (World Scientific, Singapore, 1996)Google Scholar
  12. 12.
    B.Y. Cao, Z.Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    B.X. Cai, The Basis of the Solid State Physics. (Higher Education Press, Beijing, 1990). (in Chinese)Google Scholar
  14. 14.
    K. Huang, Solid State Physics. (Higher Education Press, Beijing, 1988). (in Chinese)Google Scholar
  15. 15.
    P. Mazur, Low-temperature specific heat of a thin film. Phys. Rev. B 23(12), 6503–6511 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Lu, Q.L. Song, S.H. Xia, Calculation of specific heat for aluminum thin films. Chin. Phys. Lett. 22(9), 2346–2348 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    W.H. Tang, R.Q. Zhang, Equation of State Theory and Calculation Studies (National University of Defense Technology Press, Beijing, 1999). (in Chinese)Google Scholar
  18. 18.
    M. Chester, Second sound in solids. Phys. Rev. 131(5), 2013–2015 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    W.Z. Dai, T.C. Niu, A finite difference scheme for solving a nonlinear hyperbolic two-step model in a double-layered thin film exposed to ultrashort-pulsed lasers with nonlinear interfacial conditions. Nonlinear Anal.: Hybrid Syst. 2, 121–143 (2008)Google Scholar
  20. 20.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Electron emission from surface of metals induced by ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)ADSGoogle Scholar
  21. 21.
    S. Lepri, R. Livi, A. Politi, Heat conduction in chains of nonlinear oscillators. Phys. Rev. Lett. 78, 1896–1899 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    O. Narayan, S. Ramaswarmy, Anomalous heat conduction in one dimensional momentum conserving systems. Phys. Rev. Lett. 89, 200601 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    S. Maruyama, A molecular dynamics simulation of heat conduction in finite length swnts. Phys. B: Condens. Matter 323, 193–195 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    S. Lepri, R. Livi, Heat in one dimension. Nature 421, 327 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sieniutycz, Relativistic thermohydrodynamics and conservation laws in continua with thermal inertia. Rep. Math. Phys. 49(2–3), 361–370 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single wall carbon nanotube above room temperature. Nano Lett. 6(1), 96–100 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    E. Pop, D. Mann, J. Reifenberg, K. Goodson, H.J. Dai, Electro-Thermal Transport in Metallic Single-wall Carbon Nanotubes for Interconnect Applications (International Electron Devices Meeting, Washington, DC, 2005)Google Scholar
  28. 28.
    E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H.J. Dai, Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 1555051 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations