Skip to main content

Bioprocess Engineering of Phototrophic Marine Organisms

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Phototrophic marine organisms, particularly photosynthetic marine algae, are a diverse source of natural products ranging from lipid-based biofuels to pharmacologically-active compounds. The engineered production of both biomass and natural products is accomplished within enclosed, illuminated bioreactor systems called photobioreactors. This chapter describes the basic principles of photobioreactor analysis and design, and the biological factors that limit photobioreactor performance for the controlled cultivation of phototrophic marine organisms. There are three parts to this chapter. First, the quantitative growth characteristics of photosynthetic marine organisms in liquid cell suspension culture are described, including the use of photosynthetic biomass stoichiometry to describe nutrient incorporation into cellular biomass, and the combined effects of dissolved nutrient concentration and light intensity on cell growth rate. Second, the basic elements of photobioreactor design and operation are presented, focusing on models for predicting biomass production in batch or continuous cultivation modes within common photobioreactor configurations. Third, the limiting factors in photobioreactor design and operation are critically assessed from a quantitative point of view, focusing on light and carbon dioxide transfer limitations, and their effects on biomass production. Finally, future directions for the design and applications of enclosed photobioreactors are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

adenosine triphosphate

CO 2 -TR:

CO 2 transfer rate

DHA:

docosahexaenoic acid

DNA:

deoxyribonucleic acid

DO:

dissolved oxygen

EDTA:

ethylenediaminetetraacetic acid

EPA:

eicosapentaenoic acid

GMP:

good manufacturing practices

HIV:

human immunodeficiency virus

IR:

infrared

NADPH:

nicotinamide adenine dinucleotide phosphate

PAR:

photosynthetically active radiation

PUFA:

polyunsaturated fatty acid

PVC:

polyvinylchloride

RNA:

ribonucleic acid

UV:

ultraviolet

ppm:

parts per million

References

  1. Anon: Natural product agents in development by the United States National Cancer Institute (NCI), J. Nat. Prod. 55, 1018–1019 (1992)

    Article  Google Scholar 

  2. M.A.M.A. Borowitzka: Microalgae as sources of pharmaceuticals and other biologically active compounds, J. Appl. Phycol. 7, 3–15 (1995)

    Article  CAS  Google Scholar 

  3. B.K. Carté: Biomedicinal potential of marine natural products, Bioscience 46, 271–286 (1996)

    Article  Google Scholar 

  4. C. Gudin: Why bother with microalgae? In: Algal Biotechnology, ed. by T. Sadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan, D. Christiaen (Elsevier Applied Science, London 1988) pp. 30–40

    Google Scholar 

  5. R.J. Radmer: Algal diversity and commercial algal products, Bioscience 46, 263–270 (1996)

    Article  Google Scholar 

  6. J.J. Polzin, G.L. Rorrer: Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea, Biomolecular Eng. 20, 205–215 (2003)

    Article  CAS  Google Scholar 

  7. G.L. Rorrer, B. Mullikin, G.L. Huang, W.H. Gerwick, S. Maliakal, D.P. Cheney: Production of bioactive metabolites by cell and tissue cultures of marine macroalgae in bioreactor systems. In: Plant Cell and Tissue Culture for the Production of Food Ingredients, ed. by T.-J. Fu, G. Singh, W.R. Curtis (Kluwer Academic/Plenum Publishing, New York 1998)

    Google Scholar 

  8. O.R. Zaborsky, D.H. Attaway (Eds.): Pharmaceutical and Bioactive Natural Products, Marine Biotechnology, Vol. 1 (Plenum, New York 1993)

    Google Scholar 

  9. A.L. Ahmad, N.H. Mat Yasin, C.J.C. Derek, J.K. Lim: Microalgae as a sustainable energy source for biodiesel production: A review, Renew. Sustain. Energy Rev. 15, 584–593 (2011)

    Article  CAS  Google Scholar 

  10. L. Brennan, P. Owende: Biofuels from microalgae — A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev. 14, 557–577 (2011)

    Article  Google Scholar 

  11. Y. Chisti, J. Yan: Energy from algae: current status and future trends in algal biofuels – A status report, Appl. Energy 88, 3277–3279 (2011)

    Article  Google Scholar 

  12. T.M. Mata, A.A. Martins, N.S. Caetano: Microalgae for biodiesel production and other applications: A review, Renew. Sustain. Energy Rev. 14, 217–232 (2010)

    Article  CAS  Google Scholar 

  13. J. Singh, S. Gu: Commercialization potential of microalgae for biofuels production, Renew. Sustain. Energy Rev. 14, 2596–2610 (2010)

    Article  CAS  Google Scholar 

  14. A. Singh, Olsen: S.: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Appl. Energy 88, 3548–3555 (2011)

    Article  CAS  Google Scholar 

  15. L. Li, E. Coppola, J. Rine, J.L. Miller, D. Walker: Catalytic hydrothermal conversion of triglycerides to non-ester biofuels, Energy & Fuels 24, 1305–1315 (2010)

    Article  CAS  Google Scholar 

  16. C. Jeffryes, J. Rosenburger, J. , G.L. Rorrer: Fed-batch cultivation and bioprocess modeling of Cyclotella sp. for enhanced fatty acid production by controlled silicon limitation, Algal Res. 2, 16–27 (2013)

    Article  Google Scholar 

  17. J.E. Bailey, D.F. Ollis: Biochemical Engineering Fundamentals, Second Edition (McGraw Hill, New York 1986)

    Google Scholar 

  18. H.W. Blanch, D.S. Clark: Biochemical Engineering (Marcel Dekker, New York 1997)

    Google Scholar 

  19. M.L. Shuler, F. Kargi (Eds.): Bioprocess Engineering – Basic Concepts (Prentice-Hall, Englewood Cliffs 1992)

    Google Scholar 

  20. L. Stryer: Biochemistry 2nd edn. (Freeman, San Francisco 1981), Chapter 19: Photosynthesis

    Google Scholar 

  21. J.A. Raven: Energetics and Transport in Aquatic Plants (Alan R. Liss, New York 1984)

    Google Scholar 

  22. G.R. South, A. Whittick: Introduction to Phycology (Blackwell Scientific, Oxford 1987)

    Google Scholar 

  23. G.L. Rorrer, D.P. Cheney: Bioprocess engineering of cell and tissue cultures for marine seaweeds, Aquacultural Eng. 32, 11–41 (2004)

    Article  Google Scholar 

  24. G.L. Rorrer, R.K. Mullikin: Modeling and simulation of a tubular recycle photobioreactor for macroalgal suspension cultures, Chem. Eng. Sci. 54, 3153–3162 (1999)

    Article  CAS  Google Scholar 

  25. J.J. Polzin, G.L. Rorrer: Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion, Biotechnology Bioeng. 82, 415–428 (2003)

    Article  CAS  Google Scholar 

  26. M.A. Borowitzka: Closed algal photobioreactors: design considerations for large scale systems, J. Marine Biotechnol. 4, 185–191 (1996)

    CAS  Google Scholar 

  27. Q. Hu, Q. H. Guterman, A. Richmond: A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs, Biotechnology Bioeng. 51, 51–60 (1996)

    Article  CAS  Google Scholar 

  28. J.P. Szyper, B.A. Yoza, J.R. Benemann, M.R. Tredici, O.R. Zaborsky: Internal gas exchange photobioreactor. In: Biohydrogen, ed. by O.R. Zaborky (Plenum, New York 1998) pp. 441–446

    Google Scholar 

  29. G. Torzillo, P. Carlozzi, B. Pushparaj, E. Montaini, R. Materassi: A two-plane tubular photobioreactor for outdoor culture of Spirulina, Biotechnology Bioeng. 42, 891–898 (1993)

    Article  CAS  Google Scholar 

  30. Y. Watanabe, J. de la Noüe, D.O. Hall: Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis, Biotechnology Bioeng. 47, 261–269 (1995)

    Article  CAS  Google Scholar 

  31. C.G. Lee, B.O. Palsson: High density algal photobioreactors using light-emitting diodes, Biotechnology Bioeng. 44, 1161–1167 (1994)

    Article  CAS  Google Scholar 

  32. T. Matsunaga, H. Takeyama, H. Sudo, N. Oyama, S. Ariura, H. Takano, M. Hirano, J.G. Burgess: Glutamate production from CO${}_{{2}}$ by marine bacterium Synechococcus sp. using a novel photobioreactor employing light-diffusing optical fibers, Appl. Biochem. Biotechnol. 28/29, 157–167 (1991)

    Article  Google Scholar 

  33. J.C. Ogbonna, T. Soejima, T.H. Tanaka: Internal gas exchange photobioreactor. In: Biohydrogen, ed. by O.R. Zaborky (Plenum, New York 1998) pp. 329–343

    Google Scholar 

  34. O. Pulz, N. Gerbsch, R. Buchholz: Light energy supply in plate-type and light diffusing optical fiber bioreactors, J. Appl. Phycol. 7, 145–149 (1995)

    Article  Google Scholar 

  35. J.F. Cornet, C.G. Dussap, P. Cluzel, G. Dubertret: A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: identification of kinetic parameters under light and mineral limitations. Biotech, Bioeng. 40, 826–834 (1992)

    Article  CAS  Google Scholar 

  36. E.M. Grima, F.G. Camancho, J.A.S. Pérez, J.M.F. Sevilla, F.G.A. Fernández, A.C. Goméz: A mathematical model of microalgal growth in light-limited chemostat culture, J. Chem. Techno. Biotechnology 61, 167–173 (1994)

    Article  Google Scholar 

  37. H.Y. Lee, L.E. Erickson, S.S. Yang: Kinetics and bioenergetics of light-limited photoautotrophic growth of Spirulina platensis, Biotechnology Bioeng. 24, 832–843 (1987)

    Article  Google Scholar 

  38. A. Prokop, L.E. Erickson: Photobioreactors. In: Bioreactor System Design, ed. by J.A. Asenjo, J.C. Merchuk (Marcel Dekker, New York 1995) pp. 441–475

    Google Scholar 

  39. A.E. Rabe, R.J. Benoit: Mean light intensity – A useful concept in correlating growth rates of dense cultures of microalgae, Biotechnology Bioeng. 4, 377–390 (1962)

    Article  Google Scholar 

  40. J. Pirt, Y.K. Lee, M.R. Walach, M.W. Pirt, H.H.M. Balyuzi, M.J. Bazin: Tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance, J. Chem. Techno. Biotechnology 33B, 35–58 (1983)

    CAS  Google Scholar 

  41. M.Y. Chisti, M. Moo-Young: Airlift reactors: characteristics, applications, and design considerations, Chem. Eng. Comm. 60, 195–242 (1987)

    Article  CAS  Google Scholar 

  42. E.M. Grima, J.A.S. Pérez, F.G. Camancho, A.R. Medina: Gas-liquid transfer of atmospheric CO${}_{{2}}$ in microalgal cultures, J. Chem. Techno. Biotechnology 56, 329–337 (1993)

    Article  Google Scholar 

  43. G.L. Rorrer, H. Qi: Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a stirred-tank bioreactor, Biotechnology Bioeng. 45, 251–260 (1995)

    Article  Google Scholar 

  44. K. Schneider, K. Frischknecht: Determination of O${}_{{2}}$ and CO${}_{{2}}$ K${}_{{L}}$a values in fermenters with the dynamic method measuring the step responses of the gas phase, J. Appl. Chem. Biotechnology 27, 631–642 (1977)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Rorrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rorrer, G.L. (2015). Bioprocess Engineering of Phototrophic Marine Organisms. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_9

Download citation

Publish with us

Policies and ethics