Skip to main content

Biocatalysts from Aplysia: Sweet Spot in Enzymatic Carbohydrate Synthesis

  • Chapter
Book cover Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 8599 Accesses

Abstract

Speaking in general terms, glycosylation is considered to be an important method for the structural modification of compounds with useful biological activities. Glycosylation allows conversion of lipophilic compounds into hydrophilic ones, thus improving their pharmacokinetic properties or giving access to new drug delivery systems (prodrugs). Examples include synthetic carbohydrate-based polymers used as coating agents and as biomedical materials, or novel dietary carbohydrates introduced as food additives. Finally, chromophoric oligosaccharides are of widespread interest for the kinetic analysis of hydrolytic activities and to characterize the mode of action of particular enzymes (i. e., exo or endoglycosidases). Hence carbohydrate-based compounds have proved to be a valuable tool in different fields of applicative interest, such as clinical, biological, and food chemistry. Different enzymes acting on these molecules are commercially available, but a greater interest would entail a search for biocatalysts with new catalytic characteristics. The marine environment has been shown to be a very interesting source for new glycosyl hydrolases both for hydrolytic and synthetic applications. Aplysia is a genus of sea hares belonging to the family Aplysiidae, containing different species of organisms. Aplysia fasciata and Aplysia kurodai are two examples; they are herbivorous animals and eat a variety of red, green, or brown algae and have been revealed to be potent producers of a library of glycoside hydrolases applied in the synthesis and hydrolysis of glycosidic bonds. In this chapter, examples of applications of such enzymes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

8-HPETE:

(8R)-hydroperoxyeicosa-5,9,11,14-tetraenoic acid

ATCC:

American Type Culture Collection

COSY:

correlation spectroscopy

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DNA:

deoxyribonucleic acid

DPPH:

1,1-diphenyl-2-picrylhydrazyl

ESI-MS:

electrospray ionization mass spectrometry

GH:

glycoside hydrolase

HIV:

human immunodeficiency virus

HPAEC-PAD:

high-performance anion-exchange chromatography with pulsed amperometric detection

HPLC:

high-performance liquid chromatography

MW:

molecular weight

NMR:

nuclear magnetic resonance

PAGE:

polyacrylamide gel electrophoresis

SDS-PAGE:

polyacrylamide gel electrophoresis

SDS:

sodium dodecyl sulfate

TOCSY:

total correlation spectroscopy

cDNA:

complementary DNA

References

  1. A. Trincone, A. Giordano: Glycosyl hydrolases and glycosyl transferases in the synthesis of oligosaccharides, Curr. Org. Chem. 10, 1163–1193 (2006)

    Article  CAS  Google Scholar 

  2. P. Lorenz, J. Eck: Screening for novel industrial biocatalysts, Eng. Life Sci. 6, 501–504 (2004)

    Article  Google Scholar 

  3. Q. Wang, J.S. Dordick, R.J. Linhardt: Synthesis and application of carbohydrate-containing polymers, Chem. Materials 14, 3232–3244 (2002)

    Article  CAS  Google Scholar 

  4. S.I. Mussatto, I.M. Mancilha: Non-digestible oligosaccharides: A review, Carbohydr. Polymers 68, 587–597 (2007)

    Article  CAS  Google Scholar 

  5. V. Kren: Glycoside vs. aglycon: The role of glycosidic residue in biological activity. In: Glycoscience Chemistry and Chemical Biolog, ed. by B.O. Fraser-Reid, K. Tatsuta and J. Thiem (Springer Berlin, Heidelberg 2008) pp. 2589–2644

    Google Scholar 

  6. A. Trincone: Potential biocatalysts originating from sea environments, J. Mol. Catal. B: Enzym. 66(3/4), 241–256 (2010)

    Article  CAS  Google Scholar 

  7. A. Trincone: Some enzymes in marine environment: Prospective applications found in patent literature, Recent Pat, Biotechnol. 6(2), 134–148 (2012)

    CAS  Google Scholar 

  8. A. Trincone: Marine biocatalysts: enzymatic features and applications, Mar. Drugs 9(4), 478–499 (2011)

    Article  CAS  Google Scholar 

  9. A. Giordano, G. Andreotti, A. Tramice, A. Trincone: Marine glycosyl hydrolases in the hydrolysis and synthesis of oligosaccharides, Biotechnology J. 1(5), 511–530 (2006)

    Article  CAS  Google Scholar 

  10. A. Tramice, G. Andreotti, A. Giordano, A. Trincone: Enzymatic transglycosylation. In: Encyclopedia of Industrial Biotechnology, Bioprocess, Bioseparation, and Cell Technology, ed. by M.C. Flickinger (Wiley-VCH, Hoboken 2010) pp. 2071–2086

    Google Scholar 

  11. D.E. Koshland: Stereochemistry and the mechanism of enzymatic reactions, Biol. Rev. 28, 416–436 (1953)

    Article  CAS  Google Scholar 

  12. V.L. Yip, S.G. Withers: Breakdown of oligosaccharides by the process of elimination, Curr. Opin. Chem. Biol. 10, 147–155 (2006)

    Article  CAS  Google Scholar 

  13. D. Vocadlo, G.J. Davies: Mechanistic insights into glycosidase chemistry, Curr. Opin. Chem. Biol. 12, 539–555 (2008)

    Article  CAS  Google Scholar 

  14. G. Davies, B. Henrissat: Structures and mechanisms of glycosyl hydrolases, Structure 3, 853–859 (1995)

    Article  CAS  Google Scholar 

  15. D.H.G. Crout, G. Vic: Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis Curr. Opin. Chem, Biol. 2, 98–111 (1998)

    CAS  Google Scholar 

  16. G. Perugino, A. Trincone, M. Rossi, M. Moracci: Oligosaccharide synthesis by glycosynthases, Trends Biotechnol. 22, 1, 31–37 (2004)

    Article  Google Scholar 

  17. S.M. Hancock, M.D. Vaughan, S.G. Withers: Engineering of glycosidases and glycosyltransferases, Curr. Opin. Chem. Biol. 10, 509–519 (2006)

    Article  CAS  Google Scholar 

  18. W. Lai-Xi, W. Huang: Enzymatic transglycosylation for glycoconjugate synthesis, Curr. Opin. Chem. Biol. 13(5–6), 592–600 (2009)

    Google Scholar 

  19. A. Kobata: The history of glycobiology in Japan, Glycobiology 11, 8, 99R–105R (2001)

    Article  Google Scholar 

  20. J.A. Cabezas, P. Calvo, T. , Diez, M.J. Melgar, O.M.V. de la Tabla, A. de Pedro, N. Perez, A. Reglero, M.G. Santamaria, E. Villar: Glycosidases of various mollusks: General properties, kinetic studies and action on natural substrates, Rev. Esp. Fisiol. 38, 73–79 (1982)

    CAS  Google Scholar 

  21. J.A. Cabezas, A. Reglero, P. Calvo: Glycosidases. (fucosidases, galactosidases, glucosidases, hexosaminidases and glucuronidase from some molluscs and vertebrates, and neuraminidase from virus, Int. J. Biochem. 15, 243–259 (1983)

    Article  CAS  Google Scholar 

  22. L. Gianfreda, A. Imperato, R. Palescandolo, V. Scardi: Distribution of β-1,4-glucanase and β-glucosidase activities among marine molluscs with different feeding habits, Comp. Biochem. Physiol. B 63, 345–348 (1979)

    Article  Google Scholar 

  23. Y.V. Burtseva, M.I. Kusaikin, V.V. Sova, N.M. Shevchenko, A.S. Skobun, T.N. Zvyagintseva: Distribution of fucoidan hydrolases and some glycosidases among marine invertebrates, Russ. J. Mar. Biol. 26, 453–456 (2000)

    Article  Google Scholar 

  24. L.A. Elyakova, V.V. Sova, V.E. Vaskovsky: Cellulase of marine mollusc (Littorina sp.), Biochim. Biophys. Acta 167, 462–464 (1968)

    Article  CAS  Google Scholar 

  25. C.G. Alexander, R.L. Cutler, D. Yellowless: Studies on the composition and enzyme content of the crystalline style of Telescopium telescopium (L.) (Gastropoda), Comp. Biochem. Physiol. B 64, 83–89 (1979)

    Google Scholar 

  26. S. Furukawa, T. Fujikawa, D. Koga, A. Ide: Purification and some properties of exotype fucoidanases from Vibrio sp. N-5, Biosci. Biotechnol. Biochem. 56, 1829–1834 (1992)

    Article  CAS  Google Scholar 

  27. N.M. Thanassi, H.I. Nakada: Enzymatic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotis species, Arch. Biochem. Biophys. 118, 172–177 (1967)

    Article  CAS  Google Scholar 

  28. K. Kitamura, M. Matsuo, T. Yasui: Enzymatic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis, Biosci. Biotechnol. Biochem. 56, 490–494 (1992)

    Article  CAS  Google Scholar 

  29. K. Sasaki, T. Sakai, K. Kojima, S. Nakayama, Y. Nakanishi, I. Kato: Partial purification and characterization of an enzyme releasing 2-sulfo-α-L-fucopyranosyl-(1-$> $2)-pyridylaminated fucose from a sea urchin, Strongylocentrotus nudus, Biosci. Biotechnol. Biochem. 60, 666–668 (1996)

    Article  CAS  Google Scholar 

  30. S. Soeda, S. Ishida, H. Shimeno, A. Nagamatsu: Inhibitory effect of oversulfated fucoidan on invasion through reconstituted basement membrane by murine Lewis lung carcinoma, Jpn. J. Cancer Res. 85, 1144–1150 (1994)

    Article  CAS  Google Scholar 

  31. T.D. Butters: Purification to homogeneity of Charonia lampas α-fucosidase by using sequential ligand-affinity chromatography, Biochemical J. 279, 189–195 (1991)

    Article  CAS  Google Scholar 

  32. O. Politz, M. Krah, K.K. Thomsen, R. Borriss: A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus, Appl. Microbiol. Biotechnol. 53, 715–721 (2000)

    Article  CAS  Google Scholar 

  33. M. Turkiewicz, J. Kur, A. Bialkowska, H. Cieslinski, H. Kalinowska, S. Bielecki: Antarctic marine bacterium pseudoalteromonas sp, 22b as a source of cold-adapted β-galactosidase, Biomolecular Eng. 20, 317–324 (2003)

    CAS  Google Scholar 

  34. I.Y. Bakunina, V.V. Sova, O.I. Nedashkovskaya, R.A. Kuhlmann, L.M. Likhosherstov, M.D. Martynova, V.V. Mihailov, L.A. Elyakova: α-galactosidase of the marine bacterium Pseudoalteromonas sp, KMM 701, Biochemistry (Mosc) 63, 1209–1215 (1998)

    CAS  Google Scholar 

  35. Y. Fukano, M. Ito: Preparation of GM1 ganglioside with sialidase-producing marine bacteria as a microbial biocatalyst, Appl. Environ. Microbiol. 63, 1861–1865 (1997)

    CAS  Google Scholar 

  36. A.J. Susswein, S. Gev, Y. Achituv, S. Markovich: Behavioral patterns of Aplysia fasciata along the Mediterranean coast, Neural Biol. 41, 7–22 (1984)

    Article  CAS  Google Scholar 

  37. E.R. Kandel, J.H. Schwartz, T.M. Jessell: Principles of neural science, 4th edn. (McGraw-Hill, New York 2000)

    Google Scholar 

  38. A. Giordano, G. Andreotti, E. Mollo, A. Trincone: Transglycosylation reactions performed by glycoside hydrolases from the marine anaspidean mollusc Aplysia fasciata, J. Mol. Catal. B: Enzym. 30, 51–59 (2004)

    Article  CAS  Google Scholar 

  39. M.I. Kusaykin, Y.V. Burtseva, T.G. Svetasheva, V.V. Sova, T.N. Zvyagintseva: Distribution of O-glycosylhydrolases in marine invertebrates. Enzymes of the marine mollusk Littorina kurila that catalyze fucoidan transformation, Biochemistry (Mosc). 68, 317–324 (2003)

    Article  CAS  Google Scholar 

  40. G. Andreotti, A. Giordano, A. Tramice, E. Mollo, A. Trincone: Hydrolyses and transglycosylation performed by purified α-glucosidase of the marine mollusc Aplysia fasciata, J. Biotechnology 122, 23, 274–284 (2006)

    Article  Google Scholar 

  41. A.A. Kimura: Molecular anatomy of α-glucosidases, Trends Glycosci. Glycotechnol. 68, 12, 373–380 (2000)

    Article  Google Scholar 

  42. M.A.A. Morales, M. Remaud-Simeon, R.M. Willemot, M.R. Vignon, P. Monsan: Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase, Carbohydr. Research 331, 403–411 (2001)

    Article  Google Scholar 

  43. M. Sugimoto, S. Furui, K. Sasaki, Y. Suzuki: Transglucosylation activities of multiple forms of α-glucosidase from spinach, Biosci. Biotechnol. Biochem. 5, 1160–1163 (2003)

    Article  Google Scholar 

  44. A. Tramice, A. Giordano, G. Andreotti, E. Mollo, A. Trincone: High-yielding enzymatic α-glucosylation of pyridoxine by marine α-glucosidase from Aplysia fasciata, Mar. Biotechnology 8, 448–452 (2006)

    Article  CAS  Google Scholar 

  45. P. Pham, W. Zhang, V. Chen, T. Whitney, J. Yao, D. Froese, A.D. Friesen, J.M. Diakur, W. Haque: Design and synthesis of novel pyridoxine 50-phosphonates as potential antiischemic agents, J. Med. Chem. 46, 3680–3687 (2003)

    Article  CAS  Google Scholar 

  46. A. Tramice, G. Andreotti, A. Trincone: Direct enzymatic glucosylation of naringin in grapefruit juice by α-d-glucosidase from the marine mollusc Aplysia fasciata, Biotechnology J. 3, 545–554 (2008)

    Article  CAS  Google Scholar 

  47. M. Fuchs, Y. Simeo, B.T. Ueberbacher, B. Mautner, T. Netscher, K. Faber: Enantiocomplementary chemoenzymatic asymmetric synthesis of (R)- and (S)-chromanemethanol, Eur. J. Org. Chem. 6, 833–840 (2009)

    Article  Google Scholar 

  48. A. Tramice, G. Andreotti, A. Trincone: Hydrosoluble antioxidants by enzymatic glucosylation of a vitamin E derivative using marine α-D-glucosidase from Aplysia fasciata, Mar. Biotechnology 13, 773–781 (2011)

    Article  CAS  Google Scholar 

  49. A. Trincone, E. Pagnotta, A. Tramice: Enzymatic routes for the production of mono- and di-glucosylated derivatives of hydroxytyrosol, Bioresource Technol. 115, 79–83 (2012)

    Article  CAS  Google Scholar 

  50. A. Arena, N. Arena, A. De Gregorio, R. Maccari, R. Ottanà, B. Pavone, A. Tramice, A. Trincone, M.G. Vigorita: 2/4-substituted-9-fluorenones and their O-glucosides as potential immunomodulators and anti-herpes simplex virus-2 agents. Part 5, Eur. J. Med. Chem. 43(12), 2656–2664 (2007)

    Article  Google Scholar 

  51. G. Andreotti, A. Trincone, A. Giordano: Convenient synthesis of β-galactosyl nucleosides using the marine β-galactosidase from Aplysia fasciata, J. Mol. Catal. B: Enzym. 47, 28–32 (2007)

    Article  CAS  Google Scholar 

  52. R. Lopez, A. Fernandez-Mayoralas: Enzymic β-galactosidation of modified monosaccharides: Study of the enzyme selectivity for the acceptor and its application to the synthesis of disaccharides, J. Org. Chem. 59, 737–745 (1994)

    Article  CAS  Google Scholar 

  53. A. Giordano, A. Tramice, G. Andreotti, E. Mollo, A. Trincone: Enzymatic syntheses and selective hydrolysis of O-β-D-galactopyranosides using a marine mollusc β-galactosidase, Bioorg. Med. Chem. Lett. 15, 139–143 (2005)

    Article  CAS  Google Scholar 

  54. G. Andreotti, A. Trincone, A. Giordano: Convenient synthesis of β-galactosyl nucleosides using the marine β-galactosidase from Aplysia fasciata, J. Mol. Catal. B: Enzym. 47, 28–32 (2007)

    Article  CAS  Google Scholar 

  55. M. Takahashi, T. Kagasaki, T. Hosoya, S. Takahashi: Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties, J. Antibiotics 46, 1643–1647 (1993)

    Article  CAS  Google Scholar 

  56. S.C. Ennis, H.M.I. Osborn: The stereoselective synthesis of β-mannosides. In: Carbohydrates, Best Synthetic Methods Series (Academic Press, Kidlington, Oxford 2003) pp. 239–276

    Google Scholar 

  57. O. Nashiru, D.L. Zechel, D. Stoll, T. Mohammadzadeh, R.A.J. Warren, S.G. Withers: β-Mannosynthase: Synthesis of β-mannosides with a mutant β-mannosidase, Angew. Chem. Int. Ed. 40, 417–420 (2001)

    Article  CAS  Google Scholar 

  58. H. Itoh, Y. Kamiyama: Synthesis of alkyl β-mannosides from mannobiose by Aspergillus niger β-mannosidase, J. Ferment. Bioeng. 80, 510–512 (1995)

    Article  CAS  Google Scholar 

  59. G. Andreotti, A. Giordano, A. Tramice, E. Mollo, A. Trincone: Purification and characterization of a highly specific β-D-mannosidase from the marine anaspidean Aplysia fasciata, J. Biotechnology 119, 26–35 (2005)

    Article  CAS  Google Scholar 

  60. S. Dhawan, J. Kaur: Microbial mannanases: An overview of production and applications, Crit. Rev. Biotechnol. 27, 197–216 (2007)

    Article  CAS  Google Scholar 

  61. U.A. Zahura, M.M. Rahman, A. Inoue, T. Ojima: Characterization of a β-D-mannosidase from a marine gastropod, Aplysia kurodai, Comp. Biochem. Physiol. B. 162, 24–33 (2012)

    Article  CAS  Google Scholar 

  62. U.A. Zahura, M.M. Rahman, A. Inoue, H. Tanaka, T. Ojima: An endo-β-1,4 mannanase, AkMan, from the common sea hare Aplysia kurodai, Comp. Biochem. Physiol. B. 157, 137–143 (2010)

    Article  Google Scholar 

  63. U.A. Zahura, M.M. Rahman, A. Inoue, H. Tanaka, T. Ojima: cDNA cloning and bacterial expression of an endo-β-1,4-mannanase, AkMan, from Aplysia kurodai, Comp. Biochem. Physiol. B. 159, 227–235 (2011)

    Article  Google Scholar 

  64. M.M. Rahman, A. Inoue, H. Tanaka, T. Ojima: Isolation and characterization of two alginate lyase isozymes, AkAly28 and AkAly33, from the common sea hare Aplysia kurodai, Comp. Biochem. Physiol. B. 157, 317–325 (2010)

    Article  Google Scholar 

  65. M.M. Rahman, A. Inoue, H. Tanaka, T. Ojima: cDNA cloning of an alginate lyase from a marine gastropod Aplysia kurodai and assessment of catalytically important residues of this enzyme, Biochimie 93, 1720–1730 (2011)

    Article  CAS  Google Scholar 

  66. Y. Kumagai, T. Ojima: Isolation and characterization of two types of beta-1,3-glucanases from the common sea hare Aplysia kurodai, Comp. Biochem. Physiol. B 155, 138–144 (2010)

    Article  Google Scholar 

  67. J. Spek: Beirrage zur Kenntnis der chernischen Zusammensetzung und Entwicklung 307 der Radula der Gastropoden, Z. Wiss. Zool. 118, 313 (1919)

    Google Scholar 

  68. W. Bawab, R.S. Aloyz, P. Crine, B.P. Roquest, L. Des Groseillers: Identification and characterization of a neutral endopeptidase activity in Aplysia californica, Biochemical. J. 296, 459–465 (1993)

    Article  CAS  Google Scholar 

  69. X. Fan, Y. Qian, L.D. Fricker, D.B. Akalal, G.T. Nagle: Cloning and expression of Aplysia carboxypeptidase D, a candidate prohormone processing enzyme, DNA Cell Biol. 18(2), 121–132 (1999)

    Article  CAS  Google Scholar 

  70. D.J. Steel, T.L. Tieman, J.H. Schwartz, S.J. Feinmark: Identification of an 8-lipoxygenase pathway in nervous tissue of Aplysia californica, J. Biol. Chem. 272, 30(25), 18673–18681 (1997)

    Article  Google Scholar 

  71. Y. Akakabe, K. Matsui, T. Kajiwara: Enantioselective formation of (R)-9-HPODE and (R)-9-HPOTrE in marine green alga Ulva Conglobata Bioorg. Med, Chem. 10, 3171–3173 (2002)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Trincone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trincone, A. (2015). Biocatalysts from Aplysia: Sweet Spot in Enzymatic Carbohydrate Synthesis. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_30

Download citation

Publish with us

Policies and ethics