Skip to main content

Biotransformation of Nitriles by Marine Fungi

  • Chapter
Springer Handbook of Marine Biotechnology

Abstract

In this study, a screening of 12 marine fungi (Penicillium miczynskii CBMAI 930, Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 933, Aspergillus sydowii CBMAI 934, Aspergillus sydowii CBMAI 935, Bionectria sp. CBMAI 936, Penicillium oxalicum CBMAI 1185, Penicillium citrinum CBMAI 1186, Penicillium decaturense CBMAI 1234, Penicillium raistrickii CBMAI 1235, Cladosporium sp. CBMAI 1237, and Aspergillus sydowii CBMAI 1241) was conducted in order to evaluate the enzymatic potential of these microorganisms for biotransformation of phenylacetonitrile 1. These microorganisms were isolated from sponges and algae collected on the northern part of the coast of São Paulo State, Brazil. The screening was carried out on a solid mineral medium supplemented with glucose and phenylacetonitrile 1 as the only source of nitrogen. Afterwards, the microorganisms adapted were tested in a liquid medium containing 20, 40, and 60 μ L of phenylacetonitrile 1. The phenylacetonitrile 1 was biotransformed into the 2-hydroxyphenylacetic 1a acid by eight of the marine fungi selected. The enzymes which hydrolyzed nitriles in these catalytic systems were inducible. Since the mycelium of A. sydowii CBMAI 934 grew strongly in solid and liquid mineral media in the presence of phenylacetonitrile 1, this fungus was selected for the enzymatic hydrolysis reactions using other nitriles, such as 4-fluorophenylacetonitrile 2,4-chlorophenylacetonitrile 3, 4-methoxyphenylacetonitrile 4, cyclohexenylacetonitrile 5, and 2-cyanopyridine 14, yielding their corresponding carboxylic acids: 4-fluorophenylacetic 2a ( 51 % ), 4-chlorophenylacetic 3a ( 55 % ), 4-methoxyphenylacetic 4a ( 43 % ), cyclohexenylacetic acid 5a ( 28 % ), and the amide, 2-pyridinecarboxamide 14a, respectively. This chapter reports on the study on the biotransformation of nitriles by marine microorganisms which is summarized in the context of directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CC:

column chromatography

Cys:

cysteine

EtOAc:

ethyl acetate

GC-FID:

gas chromatography-flame ionization detector

GC-MS:

gas chromatography-mass spectrometry

Glu:

glutamic acid

HCN:

hydrogen cyanide

HIV:

human immunodeficiency virus

HRMS:

High Resolution Mass Spectrometry

IAA:

imidazole acetic acid

IR:

Infrared Spectroscopy

Lys:

lysine

NHase:

Nitrile hydratase

NLase:

Nitrilase

NMR:

nuclear magnetic resonance

NO:

nitric oxide

ee:

enantiomeric excess

References

  1. H.F. Castro, A.A. Mendes, J.C. Santos: Modificação de óleos e gorduras por biotransformação, Quim. Nova 27, 146–156 (2004)

    Article  Google Scholar 

  2. F. Molinari, D. Romano, R. Gandolfi, R. Gualandris, N. Ferrara: Biocatalysis for use in pharmaceutical manufacturing, J. Biotechnol. 131, 98–121 (2007)

    Article  Google Scholar 

  3. A. Liljeblad, L.T. Kanerva: Biocatalysis as a profound tool in the preparation of highly enantiopure βamino acids, Tetrahedron Asymm. 62(25), 5831–5854 (2006)

    Article  CAS  Google Scholar 

  4. W.-D. Fessner, N.J. Turner, M.-X. Wang: Biocatalysis – A gateway to industrial biotechnology, Adv. Synth. Catal. 353, 2189–2190 (2011)

    Article  CAS  Google Scholar 

  5. U. Beshay, A. Moreira: Protease production from marine microorganism by immobilized cells, Proc. AIChE Annu. Meet. (Computer Optical, Austin 2004)

    Google Scholar 

  6. A.M. Vita-Marques, S.P. Lira, R.G.S. Berlinck, M.H.R. Seleghim, S.R.P. Sponchiado, S.M.T. Tornisielo, M. Barata, C. Pessoa, M.O. Moraes, B.C. Cavalcanti, G.G.F. Nascimento, A.O. Souza, F.C.S. Galetti, C.L. Silva, M. Silva, E.F. Pimenta, O. Thiemann, M.R.Z. Passarini, L.D. Sette: A multi-screening appoach for marine-derived fungal metabolites and the isolation of cyclodepsipeptides from Beauveria felina, Quim. Nova 31, 1–5 (2008)

    Article  Google Scholar 

  7. C.P. Loque: Fungos agrícolas associados à macroalgas do litoral do Paraná e Península Antártica Dissertação (Mestrado em Ecologia e Ciências Biológicas (Instituto de Ciências Exatas e Biológicas da Universidade Federal de Ouro Preto, Ouro Preto 2009)

    Google Scholar 

  8. T.S. Bugni, C.M. Ireland: Marine-derived fungi: A chemically and biologically diverse group of microorganisms, Nat. Prod. Rep. 21, 143–163 (2004)

    Article  CAS  Google Scholar 

  9. M.H. Kossuga, S. Romminger, C. Xavier, M.C. Milanetto, M.Z. Valle, E.F. Pimenta, R.P. Morais, E. Carvalho, C.M. Mizuno, L.F.C. Coradello, V.M. Barroso, B. Vacondio, D.C.D. Javaroti, M.H.R. Seleghim, B.C. Cavalcanti, C. Pessoa, M.O. Moraes, B.L. Lima, R. Gonçalves, R.C. Bonugli-Santos, L.D. Sette, R.G.S. Berlinck: Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites, Braz. J. Pharmacogn. 22(2), 257–267 (2012)

    Article  CAS  Google Scholar 

  10. C. Zhan, S.-K. Kim: Research and application of marine microbial enzymes: Status and prospects, Mar. Drugs 8, 1920–1934 (2010)

    Article  Google Scholar 

  11. A. Howden, G.M. Preston: Nitrilase enzymes and their role in plant-microbe interactions, Microb. Biotechnol. 2, 441–451 (2009)

    Article  CAS  Google Scholar 

  12. K. Faber: Biotransformations in Organic Chemistry (Springer, Heidelberg 2011)

    Book  Google Scholar 

  13. Y. Kato, R. Ooi, Y. Asano: Distribution of aldoxime dehydratase in microorganisms, Appl. Environ. Microbiol. 66, 2290–2296 (2000)

    Article  CAS  Google Scholar 

  14. A. Banerjee, R. Sharma, U.C. Banerjee: The nitrile-degrading enzymes: Current status and future prospects, Appl. Microbiol. Biotechnol. 60, 33–44 (2002)

    Article  CAS  Google Scholar 

  15. D. Johnson, A. Zabelinskaja-Mackova, H. Griengl: Oxynitrilases for asymmetric C–C bond formation, Curr. Opin. Chem. Biol. 4, 103–109 (2000)

    Article  CAS  Google Scholar 

  16. J. Chen, R.-C. Zheng, Y.-G. Zheng, Y.-C. Shen: Microbial Transformation of nitriles to high-value acids or amides, Adv. Biochem. Eng. Biotechnol. 113, 33–77 (2009)

    CAS  Google Scholar 

  17. D. Zhu, C. Mukherjee, Y. Yang, B.E. Rios, D.T. Gallagher, N.N. Smith, E.R. Biehl, L. Hua: A new nitrilase from Bradyrhizobium japonicum USDA 110 gene cloning, biochemical characterization and substrate specificity, J. Biotechnol. 133, 327–333 (2008)

    Article  CAS  Google Scholar 

  18. P. Kielbasinski, M. Rachwalski, M. Mikolajczyk, M. Szyrej, M.W. Wieczorek, R. Wijtmans, F.P.J.T. Rutjes: Enzyme-promoted desymmetrisation of prochiral bis(cynomethyl)sulfoxide, Adv. Synth. Catal. 349, 1387–1392 (2007)

    Article  CAS  Google Scholar 

  19. P. Grunwald: Biocatalysis-Biochemical Fundamentals and Applications (Imperial College Press, London 2009)

    Book  Google Scholar 

  20. L. Martínkova, V. Kren: Biotransformations with nitrilases, Curr. Opin. Chem. Biol. 14, 130–137 (2010)

    Article  Google Scholar 

  21. M. Kobayashi, S. Shimizu: Nitrile hydrolases, Curr. Opin. Chem. Biol. 4, 95–102 (2000)

    Article  CAS  Google Scholar 

  22. T.U. Bornscheuer, R.J. Kazlauskas: Hydrolases in Organic Synthesis (WILEY-VCH, Weinheim 2006)

    Google Scholar 

  23. I. Endo, M. Okada, M. Yohda: An enzyme controlled by light: The molecular mechanism of photoreactivity in nitrile hydratase, Trends Biotechnol. 17, 244–248 (1999)

    Article  CAS  Google Scholar 

  24. D. Brady, A. Beeton, J. Zeevaart, C. Kgaje, E. Rantwijk, R.A. Sheldon: Characterisation of nitrilase and nitrile hydratase biocatalytic systems, Appl. Microbiol. Biotechnol. 64, 76–85 (2004)

    Article  CAS  Google Scholar 

  25. M. Winkler, A. Glieder, N. Klempier: Enzyme stabilizer DTT catalyzes nitrilase analogue hydrolysis of nitriles, Chem. Commun. 12, 1298–1300 (2006)

    Article  Google Scholar 

  26. C.O. Reilly, P.D. Turner: The nitrilases family of CN hydrolyzing enzymes – A comparative study, J. Appl. Microbiol. 95, 1161–1174 (2003)

    Article  Google Scholar 

  27. A. Petrícková, A.B. Veselá, O. Kaplan, D. Kubac, B. Uhnáková, A. Malandra, J. Felsberg, A. Rinágelová, P. Weyrauch, V. Kren, K. Bezouska, L. Martínková: Purification and characterization of heterologously expressed nitrilases from filamentous fungi, Appl. Microbiol. Biotechnol. 93, 1553–1561 (2012)

    Article  Google Scholar 

  28. W.-D. Fessner, T. Anthonsen (Eds.): Modern Biocatalysis (Weinheim, Wiley-VCH 2009)

    Google Scholar 

  29. L. Martínková, V. Vejvoda, V. Kren: Selection and screening for enzymes of nitrile metabolism, J. Biotechnol. 133, 318–326 (2008)

    Article  Google Scholar 

  30. L. Martínková, V. Vejvoda, O. Kaplan, D. Kubac, A. Malandra, M. Cantarella, K. Bezouska, V. Kren: Fungal nitrilases as biocatalysts: Recent developments, Biotechnol. Adv. 27, 661–670 (2009)

    Article  Google Scholar 

  31. O. Kaplan, K. Nikolaou, A. Pisvejcová, L. Martinková: Hydrolysis of nitriles and amides by filamentous fungi, Enzyme Microb. Technol. 38, 260–264 (2006)

    Article  CAS  Google Scholar 

  32. Y. Asano, Y. Tani, H. Yamada: A new enzyme Nitrile Hydratase which degrades acetonitrile in combination with amidases, Agric. Biol. Chem. 44, 2251–2252 (1980)

    CAS  Google Scholar 

  33. D. Fournand, A. Arnaud: Aliphatic and enantioselective amidases: From hydrolysis to acyl transfer activity, J. Appl. Microbiol. 91, 381–393 (2001)

    Article  CAS  Google Scholar 

  34. R.N. Thuku, D. Brady, M.J. Benedik, B.T. Sewell: Microbial nitrilases: Versatile, spiral forming, industrial enzymes, J. Appl. Microbiol. 106, 703–727 (2009)

    Article  CAS  Google Scholar 

  35. K. Yamamoto, Y. Ueno, K. Otsubo, K. Kawakami, K. Komatsu: Production of S-($+$)-Ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226, Appl. Environ. Microbiol. 56, 3125–3129 (1990)

    CAS  Google Scholar 

  36. P.O. Carvalho, S.A. Calafatti, M. Marassi, D.M. Silva, F.J. Contesini, R. Bizaco: Potencial de biocatálise enantiosseletiva de lipases microbianas, Quim. Nova 28, 614–621 (2005)

    Article  CAS  Google Scholar 

  37. Y.C. He, J.H. Xu, Y. Xu, L.M. Ouyang, J. Pan: Biocatalytic synthesis of (R)-(-)-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp. ECU0401, Chin. Chem. Lett. 18, 677–680 (2007)

    Article  CAS  Google Scholar 

  38. Y.-P. Xue, Z.-Q. Liu, M. Xu, Y.-J. Wanga, Y.-G. Zhenga: Efficient separation of ($R)$-(-)-mandelic acid biosynthesized from (R,S)-mandelonitrile by nitrilase using ion-exchange process, Mar. Drugs 8, 1920–1934 (2010)

    Article  Google Scholar 

  39. Q.K. Fang, P. Grover, Z. Han, F.X. Mcconville, R.F. Rossi, D.J. Olsson, D.W. Kessler, S.A. Wald, C.H. Senanayake: Practical chemical and enzymatic technologies for (S)-1,4-benzodioxan-2-carboxypiperizine intermediate in the synthesis of (S)-doxazosin mesylate, Tetrahedron 12, 2169–2174 (2001)

    Article  CAS  Google Scholar 

  40. N.M. Shaw, K.T. Robins, A. Kiener: Lonza: 20 Years of Biotransformations, Adv. Synth. Catal. 345, 425 (2003)

    Article  CAS  Google Scholar 

  41. J. Birnbaum, F. Kahan, H. Kropp, J.S. Macdonald: Carbapenems, a new class of beta-lactam antibiotics – discovery and development of Imipenen/Cilastatin, Am. J. Med. 78, 3–21 (1985)

    Article  CAS  Google Scholar 

  42. E. Eichhorn, J.P. Roduit, N. Shaw, K. Heinzmann, A. Kiener: Preparation of (S)-piperazine-2-carbozylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperazine-2-carbozylic acid, by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells, Tetrahedron: Asymm. 8, 2533–2536 (1997)

    Article  CAS  Google Scholar 

  43. H. Nishise, M. Kurihara, Y. Tani: Microbial synthesis of a tranexamic acid intermediate from nitrile, Agric. Biol. Chem. 51, 2613–2616 (1987)

    CAS  Google Scholar 

  44. S. Bergeron, D.A. Chaplin, J.H. Edwards, B.S.W. Ellis, C.L. Hill, K. Holt-Tiffin, J.R. Knight, T. Mahoney, A.P. Osborne, G. Ruecroft: Nitrilase catalysed desymmetrisation of 3-hydroxyglutaronitrile: preparation of a statin side-chain intermediate, Org. Process Res. Dev. 10, 661–665 (2006)

    Article  CAS  Google Scholar 

  45. S.J. Maddrell, N.J. Turner, A. Kerridge, A.J. Willetts, J. Crosby: Nitrile hidratase enzymes in organic synthesis: Enantioselective synthesis of the lactone moiety of the mevinic acids, Tetrahedron Lett. 37, 6001–6004 (1996)

    Article  CAS  Google Scholar 

  46. J. Mauger, T. Nagasawa, H. Yamada: Nitrile hydratase-catalyzed production of isonicotinamide, picolinamide and pyrazinamide from 4-cyanopyridine, 2-cyanopyridine and cyanopyrazine in Rhodococcus rhodochrous J1, J. Biotechnol. 8, 87–95 (1988)

    Article  CAS  Google Scholar 

  47. T. Nagasawa, T. Nakamura, H. Yamada: Production of acrylic acid and methacrylic acid using Rhodococcus rhodochorus J1 nitrilases, Appl. Microbiol. Biotechnol. 34, 322–324 (1990)

    CAS  Google Scholar 

  48. Y.-C. He, J.-H. Xu, J.-H. Su, L. Zhou: Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401, Appl. Biochem. Biotechnol. 160, 1428–1440 (2010)

    Article  CAS  Google Scholar 

  49. J. Vosáhlová, L. Pavlu, J. Vosáhlo, V. Brenner: Degradation of bromoxynil, ioxynil, dichlobenil and their mixtures by Agrobacterium radiobacter 8/4, Pest. Sci. 49, 303–306 (1997)

    Article  Google Scholar 

  50. D. Muller, J. Gabriel: Bacterial degradation of the herbicide bromoxynil by Agrobacterium radiobacter in biofilm, Folia Microbiol. 44, 377–379 (1999)

    Article  CAS  Google Scholar 

  51. J.M. Wyatt, C.J. Knowles: Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile, Int. Biodeterior. Biodegrad. 35, 227–248 (1995)

    Article  CAS  Google Scholar 

  52. T. Li, J. Liu, R. Bai, D.-G. Ohandja, F.-S. Wong: Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms, Water Res. 41, 3465–3473 (2007)

    Article  CAS  Google Scholar 

  53. J.R. De Oliveira, M.H.R. Seleghim, D.C.D. Javaroti, L.D. Sette, A.L.M. Porto: Biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid by marine fungi, Mar. Biotechnol. 1, 97–103 (2013)

    Article  Google Scholar 

  54. N. Allouche, S. Sayadi: Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain, J. Agric. Food Chem. 53, 6525–6530 (2005)

    Article  CAS  Google Scholar 

  55. D. Yang, H. Fu: Simple and pratical copper-catalyzed approach to substituted phenols from aryl halides by using water as the solvent, Chem. Eur. J. 16, 2366–2370 (2010)

    Article  CAS  Google Scholar 

  56. J.R. Mason: Oxygenase catalyzed hydroxylation of aromatic compounds: Simple chemistry by complex enzymes, Int. J. Ind. Biotechnol. 8, 19–24 (1998)

    Google Scholar 

  57. R. Ullrich, M. Hofrichter: Enzymatic hydroxylation of aromatic compounds, Cell. Mol. Life Sci. 64, 271–293 (2007)

    Article  CAS  Google Scholar 

  58. S. Rustler, A. Stolz: Isolation and characterization of a nitrile hydrolyzing acidotolerant black yeast - Exophiala oligosperma R1, Appl. Microb. Biotechnol. 75, 899–908 (2007)

    Article  CAS  Google Scholar 

  59. S. Rustler, A. Chmura, R.A. Sheldon, A. Stolz: Characterisation of the substrate specificity of the nitrile hydrolyzing system of the acid tolerant black yeast Exophiala oligosperma R1, Stud. Mycol. 61, 165–174 (2008)

    Article  CAS  Google Scholar 

  60. R. Šnajdrova, V. Kristova-Mylerova, D. Crestia, K. Nikolaou, M. Kuzma, M. Lemaire, E. Gallienne, J. Bolte, B. Karel, K. Vladimir, L. Martinkova: Nitrile biotransformation by Aspergillus niger, J. Mol. Catal. B 29, 227–232 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Meleiro Porto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meleiro Porto, A.L., Rangel de Oliveira, J., Reagli Seleghim, M.H. (2015). Biotransformation of Nitriles by Marine Fungi. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_28

Download citation

Publish with us

Policies and ethics