Skip to main content

Marine Metagenome and Supporting Technology

  • Chapter
Springer Handbook of Marine Biotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 8643 Accesses

Abstract

Bacteria are known to be highly diverse and unique to the various environments they reside in. Covering more than 70 % of the earth’s surface, marine bacterial ecosystems in particular have long been regarded as reservoirs for novel and unique genes important to industry and pharmaceutics. In the first part of the chapter, we reviewed the importance and potential of bacteria from marine environments as an important genetic resource and some of the recent efforts in the implementation of marine metagenomic research to screen for genes applicable in bioprocesses, bioremediation and bioethanol production. Nevertheless, metagenomic research has also provided new challenges that will need to be addressed in order to use these resources efficiently. Here, in the second part of the chapter, we introduced several supporting technologies that show great potential in assisting metagenomic research to overcome such challenges including high-throughput screening using microfluidics, single-cell analysis and in silico data mining of metagenomic data. The introduction of such technologies, with metagenomic research, does not only allowed us to exploit these genetic resources to the fullest but may also provide new perspectives and insights towards living organisms and natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

bacterial artificial chromosome

Cd:

cadmium

CoA:

coenzyme A

Cr:

chromium

DNA:

deoxyribonucleic acid

GDSLS:

amino acid residues considered as an important motif in the EstHE1 esterase

GDSL:

amino acid motif specific to the esterases

GEBA:

Genomic Encyclopedia of Bacteria and Archaea

GOLD:

Genomes OnLine Database

GOS:

Global Ocean Sampling

Gd:

gadolinium

MDA:

multiple displacement amplification

MEGAN:

meta genome analyzer

MG-RAST:

meta genomics rapid annotation using subsystem technology

Mon:

manganese

Ni-NTA:

nickel nitrilotriacetic acid

Ni:

nickel

ORF:

open reading frame

PCR:

polymerase chain reaction

PON1:

paraoxonase

RAST:

rapid annotation using subsystem technology

SGNH:

a motif representing amino acid residues

SMTH:

serine hydroxymethyltransferase

Se:

selenium

Sir:

strontium

WGA:

whole genome amplification

ppm:

parts per million

rDNA:

ribosomal DNA

rRNA:

ribosomal RNA

References

  1. P. Hugenholtz, B.M. Goebel, N.R. Pace: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity, J. Bacteriol. 180(18), 4765–4774 (1998)

    CAS  Google Scholar 

  2. A. Lo Giudice, C. Caruso, S. Mangano, V. Bruni, M. De Domenico, L. Michaud: Marine bacterioplankton diversity and community composition in an antarctic coastal environment, Microb. Ecol. 63(1), 210–223 (2012)

    Article  Google Scholar 

  3. M.G. van der Heijden, R.D. Bardgett, N.M. van Straalen: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems, Ecol. Lett. 11(3), 296–310 (2008)

    Article  Google Scholar 

  4. S. Humbert, S. Tarnawski, N. Fromin, M.P. Mallet, M. Aragno, J. Zopfi: Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity, ISME J. 4(3), 450–454 (2010)

    Article  Google Scholar 

  5. N. Fierer, R.B. Jackson: The diversity and biogeography of soil bacterial communities, Proc. Natl. Acad. Sci. USA 103(3), 626–631 (2006)

    Article  CAS  Google Scholar 

  6. L. Zhang, Z.H. Xu: Assessing bacterial diversity in soil, J. Soils Sediments 8(6), 379–388 (2008)

    Article  CAS  Google Scholar 

  7. F. Niehaus, C. Bertoldo, M. Kahler, G. Antranikian: Extremophiles as a source of novel enzymes for industrial application, Appl. Microbiol. Biotechnol. 51(6), 711–729 (1999)

    Article  CAS  Google Scholar 

  8. W. Fenical, P.R. Jensen: Developing a new resource for drug discovery: marine actinomycete bacteria, Nat. Chem. Biol. 2(12), 666–673 (2006)

    Article  CAS  Google Scholar 

  9. P.G. Williams: Panning for chemical gold: marine bacteria as a source of new therapeutics, Trends Biotechnol. 27(1), 45–52 (2009)

    Article  CAS  Google Scholar 

  10. J. Handelsman: Metagenomics: application of genomics to uncultured microorganisms, Microbiol. Mol. Biol. Rev. 68(4), 669–685 (2004)

    Article  CAS  Google Scholar 

  11. C.S. Riesenfeld, P.D. Schloss, J. Handelsman: Metagenomics: genomic analysis of microbial communities, Annu. Rev. Genet. 38, 525–552 (2004)

    Article  CAS  Google Scholar 

  12. W.R. Streit, R.A. Schmitz: Metagenomics – the key to the uncultured microbes, Curr. Opin. Microbiol. 7(5), 492–498 (2004)

    Article  CAS  Google Scholar 

  13. T.M. Schmidt, E.F. DeLong, N.R. Pace: Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing, J. Bacteriol. 173(14), 4371–4378 (1991)

    CAS  Google Scholar 

  14. J.L. Stein, T.L. Marsh, K.Y. Wu, H. Shizuya, E.F. DeLong: Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon, J. Bacteriol. 178(3), 591–599 (1996)

    CAS  Google Scholar 

  15. J.C. Venter, K. Remington, J.F. Heidelberg, A.L. Halpern, D. Rusch, J.A. Eisen, D. Wu, I. Paulsen, K.E. Nelson, W. Nelson, D.E. Fouts, S. Levy, A.H. Knap, M.W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.H. Rogers, H.O. Smith: Environmental genome shotgun sequencing of the Sargasso Sea, Science 304(5667), 66–74 (2004)

    Article  CAS  Google Scholar 

  16. A.I. Culley, A.S. Lang, C.A. Suttle: Metagenomic analysis of coastal RNA virus communities, Science 312(5781), 1795–1798 (2006)

    Article  CAS  Google Scholar 

  17. A.B. Martin-Cuadrado, F. Rodriguez-Valera, D. Moreira, J.C. Alba, E. Ivars-Martinez, M.R. Henn, E. Talla, P. Lopez-Garcia: Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions, ISME J. 2(8), 865–886 (2008)

    Article  CAS  Google Scholar 

  18. B. Li, D. Sher, L. Kelly, Y. Shi, K. Huang, P.J. Knerr, I. Joewono, D. Rusch, S.W. Chisholm, W.A. van der Donk: Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria, Proc. Natl. Acad. Sci. USA 107(23), 10430–10435 (2010)

    Article  CAS  Google Scholar 

  19. T. Panda, B.S. Gowrishankar: Production and applications of esterases, Appl. Microbiol. Biotechnol. 67(2), 160–169 (2005)

    Article  CAS  Google Scholar 

  20. Y. Okamura, T. Kimura, H. Yokouchi, M. Meneses-Osorio, M. Katoh, T. Matsunaga, H. Takeyama: Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria, Mar. Biotechnol. (NY) 12(4), 395–402 (2010)

    Article  CAS  Google Scholar 

  21. A. Copeland, S. Lucas, A. Lapidus, K. Barry, J.C. Detter, T. Glavina del Rio, N. Hammon, S. Israni, E. Dalin, H. Tice, S. Pitluck, H. Kiss, T. Brettin, D. Bruce, C. Han, R. Tapia, P. Gilna, J. Schmutz, F. Larimer, M. Land, L. Hauser, N. Kyrpides, E. Kim, K. Edwards, P. Richardson: Complete sequence of chromosome 1 of Marinobacter aquaeolei VT8, Submitted (DEC-2006) to the EMBL/GenBank/DDBJ databases.

    Google Scholar 

  22. C.C. Akoh, G.C. Lee, Y.C. Liaw, T.H. Huang, J.F. Shaw: GDSL family of serine esterases/lipases, Prog. Lipid Res. 43(6), 534–552 (2004)

    Article  CAS  Google Scholar 

  23. C. Upton, J.T. Buckley: A new family of lipolytic enzymes?, Trends Biochem. Sci. 20(5), 178–179 (1995)

    Article  CAS  Google Scholar 

  24. B.P. Dalrymple, D.H. Cybinski, I. Layton, C.S. McSweeney, G.P. Xue, Y.J. Swadling, J.B. Lowry: Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases, Microbiology 143(Pt8), 2605–2614 (1997)

    Article  CAS  Google Scholar 

  25. J. Li, U. Derewenda, Z. Dauter, S. Smith, Z.S. Derewenda: Crystal structure of the Escherichia coli thioesterase~II, a homolog of the human Nef binding enzyme, Nat. Struct. Biol. 7(7), 555–559 (2000)

    Article  CAS  Google Scholar 

  26. A. Molgaard, S. Kauppinen, S. Larsen: Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases, Structure 8(4), 373–383 (2000)

    Article  CAS  Google Scholar 

  27. Y.C. Lo, S.C. Lin, J.F. Shaw, Y.C. Liaw: Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network, J. Mol. Biol. 330(3), 539–551 (2003)

    Article  CAS  Google Scholar 

  28. H. Cho, J.E. Cronan Jr.: Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme, J. Biol. Chem. 268(13), 9238–9245 (1993)

    CAS  Google Scholar 

  29. K. Morimoto, E. Furuta, H. Hashimoto, K. Inouye: Effects of high concentration of salts on the esterase activity and structure of a kiwifruit peptidase, actinidain, J. Biochem. 139(6), 1065–1071 (2006)

    Article  CAS  Google Scholar 

  30. R. Singh, N. Gautam, A. Mishra, R. Gupta: Heavy metals and living systems: An overview, Indian J. Pharmacol. 43(3), 246–253 (2011)

    Article  CAS  Google Scholar 

  31. J. Wang, C. Chen: Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24(5), 427–451 (2006)

    Article  CAS  Google Scholar 

  32. E.V. Soares, H.M. Soares: Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review, Environ. Sci. Pollut. Res. Int. 19(4), 1066–1083 (2012)

    Article  Google Scholar 

  33. B. Volesky: Detoxification of metal-bearing effluents: biosorption for the next century, Hydrometallurgy 59(2), 203–216 (2001)

    Article  CAS  Google Scholar 

  34. J. Wang, C. Chen: Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27(2), 195–226 (2009)

    Article  Google Scholar 

  35. M. Mejare, L. Bulow: Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals, Trends Biotechnol. 19(2), 67–73 (2001)

    Article  CAS  Google Scholar 

  36. S. Sauge-Merle, C. Lecomte-Pradines, P. Carrier, S. Cuine, M. Dubow: Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure, Chemosphere 88(8), 918–924 (2012)

    Article  CAS  Google Scholar 

  37. L. Fieseler, M. Horn, M. Wagner, U. Hentschel: Discovery of the novel candidate phylum Poribacteria in marine sponges, Appl. Environ. Microbiol. 70(6), 3724–3732 (2004)

    Article  CAS  Google Scholar 

  38. P. Das, S. Mukherjee, R. Sen: Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans, J. Appl. Microbiol. 104(6), 1675–1684 (2008)

    Article  CAS  Google Scholar 

  39. R. Waditee-Sirisattha, D. Sittipol, Y. Tanaka, T. Takabe: Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance, FEMS Microbiol. Lett. 333(1), 46–53 (2012)

    Article  CAS  Google Scholar 

  40. Z. Mai, J. Yang, X. Tian, J. Li, S. Zhang: Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced beta-glucosidase from a marine streptomycete, Appl. Biochem. Biotechnol. 169(5), 1512–1522 (2013)

    Article  CAS  Google Scholar 

  41. R.K. Kapardar, R. Ranjan, A. Grover, M. Puri, R. Sharma: Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome, Bioresour. Technol. 101(11), 3917–3924 (2010)

    Article  CAS  Google Scholar 

  42. J.H. Jeon, H.S. Lee, J.T. Kim, S.J. Kim, S.H. Choi, S.G. Kang, J.H. Lee: Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment, Appl. Microbiol. Biotechnol. 93(2), 623–631 (2012)

    Article  CAS  Google Scholar 

  43. K. Westphal, S. Langklotz, N. Thomanek, F. Narberhaus: A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli, J. Biol. Chem. 287(51), 42962–42971 (2012)

    Article  CAS  Google Scholar 

  44. T. Tomoyasu, J. Gamer, B. Bukau, M. Kanemori, H. Mori, A.J. Rutman, A.B. Oppenheim, T. Yura, K. Yamanaka, H. Niki, S. Hiraga, T. Ogura: Escherichia Coli FtsH is a membrane-bound, ATP-Dependent protease which degrades the heat-shock transcription Factor Sigma(32), Embo. J. 14(11), 2551–2560 (1995)

    CAS  Google Scholar 

  45. K. Gao, K.R. Mckinley: Use of macroalgae for marine biomass production and CO${}_{2}$ remediation – a review, J. Appl. Phycol. 6(1), 45–60 (1994)

    Article  Google Scholar 

  46. J. Vera, J. Castro, A. Gonzalez, A. Moenne: Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants, Mar. Drugs 9(12), 2514–2525 (2011)

    Article  CAS  Google Scholar 

  47. D. Choi, H.S. Sim, Y.L. Piao, W. Ying, H. Cho: Sugar production from raw seaweed using the enzyme method, J. Ind. Eng. Chem. 15(1), 12–15 (2009)

    Article  CAS  Google Scholar 

  48. J.H. Hehemann, G. Correc, T. Barbeyron, W. Helbert, M. Czjzek, G. Michel: Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota, Nature 464(7290), 908–912 (2010)

    Article  CAS  Google Scholar 

  49. P. Nyvall Collen, J.F. Sassi, H. Rogniaux, H. Marfaing, W. Helbert: Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family, J. Biolo. Chem. 286(49), 42063–42071 (2011)

    Article  CAS  Google Scholar 

  50. S. Gomare, H.A. Kim, H.H. Jeong, M.W. Lee, J.M. Park: Isolation of the polysaccharidase-producing bacteria from the gut of sea snail, Batillus cornutus, Korean J. Chem. Eng. 28(5), 1252–1259 (2011)

    Article  CAS  Google Scholar 

  51. Y.J. Eun, A.S. Utada, M.F. Copeland, S. Takeuchi, D.B. Weibel: Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation, ACS Chem. Biol. 6(3), 260–266 (2011)

    Article  CAS  Google Scholar 

  52. G.M. Whitesides: The origins and the future of microfluidics, Nature 442(7101), 368–373 (2006)

    Article  CAS  Google Scholar 

  53. D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  CAS  Google Scholar 

  54. D. Figeys, D. Pinto: Lab-on-a-chip: a revolution in biological and medical sciences, Anal. Chem. 72(9), 330A–335A (2000)

    Article  CAS  Google Scholar 

  55. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee: Droplet microfluidics, Lab Chip 8(2), 198–220 (2008)

    Article  CAS  Google Scholar 

  56. J. West, M. Becker, S. Tombrink, A. Manz: Micro total analysis systems: latest achievements, Anal. Chem. 80(12), 4403–4419 (2008)

    Article  CAS  Google Scholar 

  57. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus: Droplet based microfluidics, Rep. Prog. Phys. 75(1), 016601 (2012)

    Article  Google Scholar 

  58. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J.B. Hutchison, J.M. Rothberg, D.R. Link, N. Perrimon, M.L. Samuels: Droplet microfluidic technology for single-cell high-throughput screening, Proc. Natl. Acad. Sci. USA 106(34), 14195–14200 (2009)

    Article  CAS  Google Scholar 

  59. K. Zengler, G. Toledo, M. Rappe, J. Elkins, E.J. Mathur, J.M. Short, M. Keller: Cultivating the uncultured, Proc. Natl. Acad. Sci. USA 99(24), 15681–15686 (2002)

    Article  CAS  Google Scholar 

  60. A. Aharoni, G. Amitai, K. Bernath, S. Magdassi, D.S. Tawfik: High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments, Chem. Biol. 12(12), 1281–1289 (2005)

    Article  CAS  Google Scholar 

  61. K. Leung, H. Zahn, T. Leaver, K.M. Konwar, N.W. Hanson, A.P. Page, C.C. Lo, P.S. Chain, S.J. Hallam, C.L. Hansen: A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities, Proc. Natl. Acad. Sci. USA 109(20), 7665–7670 (2012)

    Article  CAS  Google Scholar 

  62. M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain: Stochastic gene expression in a single cell, Science 297(5584), 1183–1186 (2002)

    Article  CAS  Google Scholar 

  63. F.S. Fritzsch, C. Dusny, O. Frick, A. Schmid: Single-cell analysis in biotechnology, systems biology, and biocatalysis, Annu. Rev. Chem, Biomol. Eng. 3, 129–155 (2012)

    CAS  Google Scholar 

  64. D. Wang, S. Bodovitz: Single cell analysis: the new frontier in omics, Trends Biotechnol. 28(6), 281–290 (2010)

    Article  CAS  Google Scholar 

  65. R.H. Templer, O. Ces: New frontiers in single-cell analysis, J. R. Soc. Interface 5(Suppl2), S111–112 (2008)

    Article  Google Scholar 

  66. M. Hosokawa, A. Arakaki, M. Takahashi, T. Mori, H. Takeyama, T. Matsunaga: High-density microcavity array for cell detection: single-cell analysis of hematopoietic stem cells in peripheral blood mononuclear cells, Anal. Chem. 81(13), 5308–5313 (2009)

    Article  CAS  Google Scholar 

  67. T. Matsunaga, M. Hosokawa, A. Arakaki, T. Taguchi, T. Mori, T. Tanaka, H. Takeyama: High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh, Anal. Chem. 80(13), 5139–5145 (2008)

    Article  CAS  Google Scholar 

  68. K.C. Schuster, E. Urlaub, J.R. Gapes: Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, J. Microbiol. Methods 42(1), 29–38 (2000)

    Article  CAS  Google Scholar 

  69. G. Nebe-von-Caron, P.J. Stephens, C.J. Hewitt, J.R. Powell, R.A. Badley: Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting, J. Microbiol. Methods 42(1), 97–114 (2000)

    Article  CAS  Google Scholar 

  70. E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter: Microfluidic digital PCR enables multigene analysis of individual environmental bacteria, Science 314(5804), 1464–1467 (2006)

    Article  CAS  Google Scholar 

  71. T.R. Thomas, D.P. Kavlekar, P.A. LokaBharathi: Marine drugs from sponge-microbe association – a review, Mar. Drugs 8(4), 1417–1468 (2010)

    Article  CAS  Google Scholar 

  72. J.W. Blunt, B.R. Copp, W.P. Hu, M.H. Munro, P.T. Northcote, M.R. Prinsep: Marine natural products, Nat. Prod. Rep. 26(2), 170–244 (2009)

    Article  CAS  Google Scholar 

  73. J. Piel, D. Hui, G. Wen, D. Butzke, M. Platzer, N. Fusetani, S. Matsunaga: Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei, Proc. Natl. Acad. Sci. USA 101(46), 16222–16227 (2004)

    Article  CAS  Google Scholar 

  74. E.R. Mardis: Next-generation DNA sequencing methods, Annu. Rev. Genomics, Hum. Genet. 9, 387–402 (2008)

    CAS  Google Scholar 

  75. T.C. Glenn: Field guide to next-generation DNA sequencers, Mol. Ecol. Resour. 11(5), 759–769 (2011)

    Article  CAS  Google Scholar 

  76. S. Bao, R. Jiang, W. Kwan, B. Wang, X. Ma, Y.Q. Song: Evaluation of next-generation sequencing software in mapping and assembly, J. Hum. Genet. 56(6), 406–414 (2011)

    Article  CAS  Google Scholar 

  77. D.H. Huson, A.F. Auch, J. Qi, S.C. Schuster: MEGAN analysis of metagenomic data, Genome Res. 17(3), 377–386 (2007)

    Article  CAS  Google Scholar 

  78. E. M. Glass, J. Wilkening, A. Wilke, D. Antonopoulos, F. Meyer: Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes, Cold Spring Harb. Protoc. 2010(1), pdb prot5368 (2010)

    Google Scholar 

  79. I. Pagani, K. Liolios, J. Jansson, I.M. Chen, T. Smirnova, B. Nosrat, V.M. Markowitz, N.C. Kyrpides: The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata, Nucleic Acids Res. 40(Database issue), D571–579 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsushi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, T., Takeyama, H. (2015). Marine Metagenome and Supporting Technology. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_19

Download citation

Publish with us

Policies and ethics