Skip to main content

Large-Scale Parallel Computing for 3D Gaseous Detonation

  • Conference paper
Parallel Computational Fluid Dynamics (ParCFD 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 405))

Included in the following conference series:

  • 3484 Accesses

Abstract

In numerical simulation of 3D gas detonation, due to the complexity of the computational domain in high resolution numerical computing negative density and pressure often emerge, which leads to blow-ups. In addition, a large number of grids resulting from relative mesh resolution and large-scale computing domain consume tremendous computing resources, which poses another challenge on the numerical simulation. In this paper, the positivity-preserving high order weighted essentially non-oscillatory (WENO) scheme is constructed without destroying the numerical accuracy and stability, and then the high-resolution parallel code is developed on the platform of Message Passing Interface (MPI). It is used to simulate the propagation of detonation wave in the 3D square duct with obstacles. The numerical results show that high-resolution parallel code can effectively simulate the propagation of 3D gas detonation wave in pipe, and the results also show that density and pressure are not negative in the event of diffraction. Therefore, the high-resolution parallel code provides an effective way to explore the new physical mechanism of 3D gas detonation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharpe, G.J.: The effect of curvature on detonation waves in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society 322, 614 (2001)

    Article  Google Scholar 

  2. Hwang, P., Fedkiw, R.P., Merriman, B., Aslam, T.D., Karagozian, A.R., Osher, S.J.: Numerical resolution of pulsating detonation waves. Combustion Theory and Modelling 4, 217 (2000)

    Article  MATH  Google Scholar 

  3. Wang, G., Zhang, D.L., Liu, K.X., Wang, J.T.: An improved two-dimensional CE/ SE method and its high order schemes. Chinese Journal of Computational Mechanics 25, 741 (2008)

    Google Scholar 

  4. Zai, J.M., Wang, S.H., Li, Y.C., Yang, J.M.: Numerical simulation of primary-secondary shock wave propagation in duct with waring cross-section. Chinese Journal of Computational Mechanics 27, 925 (2010)

    Google Scholar 

  5. Tsuboi, N., Asahara, M., Eto, K., Hayashi, A.K.: Numerical simulation of spinning detonation in square duct. Shock Waves 18, 329 (2008)

    Article  MATH  Google Scholar 

  6. Einfeldt, B., Munz, C.D., Roe, P.L., Sjogreen, B.: On Godunov-type methods near low densities. Journal of Computational Physics 92, 273 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Linde, T., Roe, P.L.: Robust Euler codes. In: Thirteenth Computational Fluid Dynamics Conference, AIAA, p. 2098 (1997)

    Google Scholar 

  8. Wang, C., Zhang, X.X., Shu, C.W., Ning, J.G.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. Journal of Computational Physics 231, 653 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zhang, X.X., Shu, C.W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. Journal of Computational Physics 231, 2245 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics 135, 250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dou, Z.H.: High performance computing Parallel programming. Tsinghua University Press, Beijing

    Google Scholar 

  12. Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon-air mixtures. Combustion and Flame 48, 63 (1982)

    Article  Google Scholar 

  13. Pintgen, F., Shepherd, J.E.: Detonation diffraction in gases. Combustion and Flame 156, 665 (2009)

    Article  Google Scholar 

  14. Xu, B.P., Wen, J.X., Tam, V.H.Y.: The effect of an obstacle plate on the spontaneous ignition in pressurized hydrogen release: A numerical study. International Journal of Hydrogen Energy 36, 2637 (2010)

    Article  Google Scholar 

  15. Valiev, D., Bychkov, V., Akkerman, V., Law, C.K., Eriksson, L.E.: Flame Acceleration in Channels with Obstacles in the Deflagration-to-detonation Transition. Combust Flame 57, 1012 (2010)

    Article  Google Scholar 

  16. Pantow, E.G., Fischer, M., Kratzel, T.: Decoupleing and recoupling of detonation waves associated with sudden expansion. Shock Waves 6, 131 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, W., Yong, B., Wenhu, H., Jianguo, N. (2014). Large-Scale Parallel Computing for 3D Gaseous Detonation . In: Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (eds) Parallel Computational Fluid Dynamics. ParCFD 2013. Communications in Computer and Information Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53962-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53962-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53961-9

  • Online ISBN: 978-3-642-53962-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics