Skip to main content

Numerical Study on Interaction of Ramp-Induced Oblique Detonation Wave with a Boundary Layer

  • Conference paper
Parallel Computational Fluid Dynamics (ParCFD 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 405))

Included in the following conference series:

  • 3496 Accesses

Abstract

A two dimensional numerical simulation based on finite-volume method is performed to investigate the ramp-induced oblique detonation wave(ODW)’s interaction with a boundary layer, giving some details of this phenomenon. A comparison among cases which include inviscid-model ODW, viscous-model ODW and inert shock wave, all induced by a ramp, well shows the effect of boundary layer on the ODW, as well as the difference between ODW-boundary-layer interaction and shock-wave-boundary-layer interaction. The separation region of the boundary layer ahead of the ramp induced by the ODW is much larger than by the corresponding shock wave. Furthermore, as the separation region extends upstream, the effective angle of the ramp decreases for the ODW. As a result, the ramp cannot hold the ODW just at its tip. Instead, the ODW now stands at the rear of the ramp, likely to be a self-sustained detonation rather than an overdriven one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Valorani, M., Di Giacinto, M., Buongiorno, C.: Performance prediction for oblique detonation wave engines(ODWE). Acta Astronautica 48(4), 211–228 (2001)

    Article  Google Scholar 

  2. Fusina, G.: Numerical investigation of oblique detonation waves for shcramjet combustor. University of Toronto, Toronto (2003)

    Google Scholar 

  3. Miltiadis: A numerical study of wedge-induced detonations. Combustion and Flame 120, 526–538 (2000)

    Article  Google Scholar 

  4. Pimentel, Azevedo, Figueira da Silva, et al.: Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions. J. of the Braz. Soc, Mechanical Sciences XXIV, 149–157 (2002)

    Google Scholar 

  5. Choi, J.Y., Kim, D.W., In-Seuck, J., et al.: Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute 31(2), 2473–2480 (2007)

    Article  Google Scholar 

  6. Dudebout, R., Sislian, J.P., Oppitz, R.: Numerical simulation of hypersonic shock-induced combustion ramjets. Journal of Propulsion and Power 14(6), 869–879 (1998)

    Article  Google Scholar 

  7. Xu, H., Jin, Z., Zhiyong, L., Shijie, L.: Initiation mechanism investigation of saltation and smoothness oblique detonation waves. Journal of Aerospace Power 27(12), 2674–2680 (2012)

    Google Scholar 

  8. Gui, M., Fan, B.: Wavelet Structure of Wedge-induced Oblique Detonation Waves. Combust. Sci. Technol 184, 1456–1470 (2012)

    Article  Google Scholar 

  9. Teng, H., Jiang, Z.: On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713, 659–669 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Choi, J.Y., In-Seuck, J., Youngbin, Y.: Scaling effect of the combustion induced by shock-wave boundary-layer interaction in premixed gas. In: Twenty-Seventh Sympostum(International) on Combustion/The Combustion Institute, pp. 2181–2188 (1998)

    Google Scholar 

  11. Kerimberkov, R.M., Ruban, A.I., Walker, I.D.A.: Hypersonic boundary layer separation on a cold wall. Journal of Fluid Mechanics (89), 535–552 (1978)

    Google Scholar 

  12. Hassaini, M.V., Baldwin, B.S., MacCormack, R.W.: Asymptotic features of shock wave boundary layer interaction. AIAA Journal 8(18), 1014–1016 (1980)

    Article  Google Scholar 

  13. Lee, S., Loth, E., Wang, C.: LES of Supersonic Turbulent Boundary Layers with μVG’s. AIAA 2007-3916 (2007)

    Google Scholar 

  14. Anderson, B.H., Tinapple, J., Surber, L.: Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation. AIAA 2006-3197 (2006)

    Google Scholar 

  15. Hirt, S., Anderson, B.: Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction. AIAA (2008)

    Google Scholar 

  16. Babinsky, H., Li, Y., Ford, C.W.P.: Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA JOURNAL 47(3), 668–675 (2009)

    Article  Google Scholar 

  17. Anderson, J.D.: Computational Fluid Dynamics: The Basis with Applications. Mcgraw-Hill (1994)

    Google Scholar 

  18. Connaire, M.O., Curran, H.J., Simmie, J.M., Pitz, W.J., et al.: A comprehensive modeling study of hydrogen oxidation. International Journal of Chemical Kinetics 36(11), 603–622 (2004)

    Article  Google Scholar 

  19. Menter, F.R.: Two-Equation Eddy-Viscorsity Turbulence Models for Engineering Applications. AIAA Journal 32(8), 1598–1605 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Han, X., Lin, Z., Zhou, J. (2014). Numerical Study on Interaction of Ramp-Induced Oblique Detonation Wave with a Boundary Layer . In: Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (eds) Parallel Computational Fluid Dynamics. ParCFD 2013. Communications in Computer and Information Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53962-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53962-6_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53961-9

  • Online ISBN: 978-3-642-53962-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics