Skip to main content

Parallel Direct Simulation Monte Carlo Using Graphics Processing Unit with CUDA

  • Conference paper
Parallel Computational Fluid Dynamics (ParCFD 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 405))

Included in the following conference series:

  • 3543 Accesses

Abstract

The direct simulation Monte Carlo is a particle-based computational method for rarefied gas flows. It is a method to solve numerically Boltzmann equation with satisfied result. However, there exist two issues to be solved in DSMC simulation, including complex grids processing and large calculated amount. Therefore, finding available computing resources is crucial to optimize and accelerate computation of DSMC. In this paper we investigate data-parallel techniques on graphics processing unit (GPU) to calculate DSMC simulation of dynamic collision grids. We have evaluated and verified the statistical and theoretical accuracy of our implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, G.A.: Molecular Gas Dynamics. Clarendon Press, Oxford (1976)

    Google Scholar 

  2. Bird, G.A.: Molecular Gas Dynamics and the direct simulation of gas flow. Clarendon Press, Oxford (1994)

    Google Scholar 

  3. Bird, G.A.: Application of the DSMC method to the full shuttle geometry. A IAA-90-1692

    Google Scholar 

  4. Dietrich, S., Boyd, I.D.: Scalar and parallel optimized implementation of the direct simulation Monte Carlo method. J. Comput. Phys. 126, 328–342 (1996)

    Article  MATH  Google Scholar 

  5. Ivanov, M., Markelov, G., Taylor, S., Watts, J.: Parallel DSMC strategies for 3D computations. In: Proceedings of the Parallel CFD 1996, Capri, Italy, p. 485 (1997)

    Google Scholar 

  6. LeBeau, G.J.: A parallel implementation of the direct simulation Monte Carlo method. Comput. Methods Appl. Mech. Eng. 174, 319–337 (1999)

    Article  MATH  Google Scholar 

  7. Wu, J.-S., Lian, Y.-Y.: Parallel three-dimensional direct simulation Monte Carlo method and its applications. Comput. Fluids 32, 1133–1160 (2003)

    Article  MATH  Google Scholar 

  8. Dietrich, S., Boyd, I.D.: Scalar and parallel optimized implementation of the direct simulation Monte Carlo method. Journal of Computational Physics 126, 328–342 (1996)

    Article  MATH  Google Scholar 

  9. Lebeau, G.J.: A parallel implementation of the direct simulation Monte Carlo method. Computer Methods Application Mechanical Engineering 174, 319–337 (1999)

    Article  MATH  Google Scholar 

  10. Macrossan, M.N.: DSMC: A fast simulation method for rarefied flow. Journal of Computational Physics 173, 600–619 (2001)

    Article  MATH  Google Scholar 

  11. Nance, R.P., Wilmoth, R.G., Moon, B., et al.: Parallel Monte Carlo simulation of three- dimensional flow over a flat plate. Journal of Thermophysics and Heat Transfer 9(3), 471–477 (1995)

    Article  Google Scholar 

  12. Thomas, R.F., John, A.L.: Implementation of the direct simulation Monte Carlo method for an exhaust plume flow field in a parallel computing environment. Computers & Fluids 18(2), 217–227 (1990)

    Article  Google Scholar 

  13. Wilmoth, R.G.: Direct simulation Monte Carlo analysis of rarefied flows on parallel processors. Journal of Thermophysics and Heat Transfer 5(3), 292–300 (1991)

    Article  Google Scholar 

  14. NVIDIA CUDA Homepage, http://developer.nvidia.com/object/cuda.html

  15. nVIDIA, NVIDIA CUDA Computer Unified Device Architecture programming Guide Version 2.0, nVIDIA (2008)

    Google Scholar 

  16. Chen, Y., Liu, H., Li, M.: Dynamic collision grid DSMC and parallel. Computer Applications and Software 26(10), 260–262 (2009)

    Google Scholar 

  17. NVIDIA CUDA Compute Unified Device Architecture Programming Guide (V1.1) (November 2007), http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf

  18. Fu, Y., Hua, R., Kang, J.-C.: Migration Dependency Analysis of DSMC Parallel Simulation. Microelectronics & Computer 24(5), 175–183 (2007)

    Google Scholar 

  19. Bird, G.A.: Sophisticated DSMC [R/OL], http://www.gab.com.au/Resources/DSMC07notes.pdf

  20. Gladkov, D., Tapia, J.-J., Alberts, S., D’Souza, R.M.: Graphics Processing Unit Based on Direct Simulation Monte Carlo. Simulation: Transactions of the Society for Modeling and Simulation International 88(6), 680–693 (2012)

    Article  Google Scholar 

  21. Mavriplis, C., Ahn, J.C., Goulard, R.: Heat Tansfer and Flow fields in Short Microchannels Using Direct Simulation Monte Carlo. J. Thermophysics and Heat Tansfer 11(4), 489–496 (1997)

    Article  Google Scholar 

  22. Sun, H.W., Faghri, M.: Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC. Numerical Heat Transfer, Part A 38, 153–168 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, J. (2014). Parallel Direct Simulation Monte Carlo Using Graphics Processing Unit with CUDA . In: Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (eds) Parallel Computational Fluid Dynamics. ParCFD 2013. Communications in Computer and Information Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53962-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53962-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53961-9

  • Online ISBN: 978-3-642-53962-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics