Advertisement

Supply Chain Performance Measurement Using a SCOR Based Fuzzy VIKOR Approach

  • Başar Öztayşi
  • Özge Sürer
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 313)

Abstract

Supply Chain performance measurement is a vital issue for supply chain management. Both from the academia and professional life, various models are proposed for this subject. In this chapter, the literature is investigated for current performance measurement models and a multi-criteria decision making approach is proposed for supply chain performance measurement. In this study, SCOR model is used for structuring the problem, Fuzzy Analytic Hierarchy Process (AHP) is used to determine the importance weights of the criteria and finally Fuzzy VIKOR is used to rank the alternatives based on expert evaluations.

Keywords

Supply chain Performance measurement Fuzzy VIKOR Fuzzy AHP 

References

  1. Baykasoglu, A., Kaplanoglu, V.: Application of activity-based costing to a land transportation company: a case study. Int. J. Prod. Econ. 116(2), 308–324 (2008)CrossRefGoogle Scholar
  2. Beamon, B.M.: Supply chain design and analysis: models and methods. Int. J. Prod. Econ. 55, 281–294 (1998)CrossRefGoogle Scholar
  3. Bhagwat, R., Sharma, M.K.: Performance measurement of supply chain management: a balanced scorecard approach. Comput. Ind. Eng. 53(1), 43–62 (2007a)CrossRefGoogle Scholar
  4. Bhagwat, R., Sharma, M.K.: Performance measurement of supply chain management using the analytical hierarchy process. Prod. Plann. Control 18(8), 666–680 (2007b)CrossRefGoogle Scholar
  5. Bhagwat, R., Sharma, M.K.: An application of the integrated AHP-PGP model for performance measurement of supply chain management. Prod. Plann. Control 20(8), 678–690 (2009)CrossRefGoogle Scholar
  6. Brewer, P.C., Speh, T.W.: Using the balanced scorecard to measure supply chain performance. J. Bus. Logistics 21(1), 75–94 (2000)Google Scholar
  7. Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets and Syst. 17, 233–247 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  8. Cagnazzo, L., Taticchi, P., Brun, A.: The role of performance measurement systems to support quality improvement initiatives at supply chain level. Int. J. Prod. Perform. Manage. 59(2), 163–185 (2010)CrossRefGoogle Scholar
  9. Chan, F.T.S.: Performance measurement in a supply chain. Int. J. Adv. Manuf. Technol. 21(7), 534–548 (2003)CrossRefGoogle Scholar
  10. Chan, F.T.S., Qi, H.: An innovative performance measurement method for supply chain management. Supply Chain Manag. Int. J. 8(3), 209–223 (2003)CrossRefMathSciNetGoogle Scholar
  11. Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP European. J.Oper. Res. 95, 649–655 (1996)CrossRefzbMATHGoogle Scholar
  12. Chen, L.Y., Wang, T.C.: Optimizing partners’ choice in IS/IT outsourcing projects: the strategic decision of fuzzy VIKOR. Int. J. Prod. Econ. 120(1), 233–242 (2009)CrossRefGoogle Scholar
  13. Cooper, M.C., Lambert, D.M., Pagh, J.D.: Supply chain management: more than a new name for logistics. Int. J. Logistics Manage. 8(1), 1–14 (1997)CrossRefGoogle Scholar
  14. El-Baz, M.A.: Fuzzy performance measurement of a supply chain in manufacturing companies. Expert Syst. Appl 38(6), 6681–6688 (2011)CrossRefGoogle Scholar
  15. Elgazzar, S.H., Tipi, N.S., Hubbard, N.J., Leach, D.Z.: Linking supply chain processes performance to a company’s financial strategic objectives. Eur. J. Oper. Res. 223(1), 276–289 (2012)CrossRefGoogle Scholar
  16. Estampe, D., Lamouri, S., Paris, J.-L., Brahim-Djelloul, S.: A framework for analysing supply chain performance evaluation models. Int. J. Prod. Econ. 142(2), 247–258 (2013)CrossRefGoogle Scholar
  17. Felix, T.S., Chan, H.Q.: Feasibility of performance measurement system for supply chain: a process-based approach and measures. Integr. Manuf. Syst. 14(3), 179–190 (2003)CrossRefGoogle Scholar
  18. Folan, P., Browne, J., Jagdev, H.: Performance: Its meaning and content for today’s business research. Comput. Ind. 58, 605–620 (2007)CrossRefGoogle Scholar
  19. Forme, F.-A.G.L., Genoulaz, V.B., Campagne, J.-P.: A framework to analyse collaborative performance. Comput. Ind. 58(7), 687–697 (2007)CrossRefGoogle Scholar
  20. Ganga, G.M.D., Carpinetti, L.C.R.: A fuzzy logic approach to supply chain performance management. Int. J. Prod. Econ. 134(1), 177–187 (2011)CrossRefGoogle Scholar
  21. Gilmour, P.: A strategic audit framework to improve supply chain performance. J. Bus. Ind. Mark. 14(5), 355–366 (1999)CrossRefGoogle Scholar
  22. Gou, J., Shen, G., Chai, R.: Model of service-oriented catering supply chain performance evaluation. J. Ind. Eng. Manage. 6(1), 215–226 (2013)Google Scholar
  23. Gunasekaran, A., Patel, C., McGaughey, R.E.: A framework for supply chain performance measurement. Int. J. Prod. Econ. 87(3), 333–347 (2004)CrossRefGoogle Scholar
  24. Harris, J.K., Swatman, P.M.: Efficient consumer response (ECR): a survey of the Australian grocery industry. Supply Chain Manage. Int. J. 4(1), 35–42 (1999)CrossRefGoogle Scholar
  25. Kaplan, R.S., Norton, D.P.: The Balanced Scorecard—Measures That Drive Performance. Harvard Business Review, January–February, pp. 71–79 (1992)Google Scholar
  26. Kulak, O., Kahraman, C.: Fuzzy Multi-Attribute Selection Among Transportation Companies Using Axiomatic Design and Analytic Hierarchy Process. Inf. Sci. 170, 191–210 (2005)CrossRefzbMATHGoogle Scholar
  27. Kurnia, S., Johnston, R.B.: Adoption of efficient consumer response: the issue of mutuality. Supply Chain Manage Int. J. 6(5), 230–241 (2001)CrossRefGoogle Scholar
  28. Lambert, D.M., Pohlen, T.L.: Supply chain metrics. Int. J. Logistics Manage. 12(1), 1–19 (2001)CrossRefGoogle Scholar
  29. Lebas, M.: Performance measurement and performance management. Int. J. Prod. Econ. 41, 23–25 (1995)CrossRefGoogle Scholar
  30. Li, S., Rao, S.S., Ragu-Nathan, T., Ragu-Nathan, B.: Development and validation of a measurement instrument for studying supply chain management practices. J. Opertions Manage. 23(6), 618–641 (2005)CrossRefGoogle Scholar
  31. Lin, R.-J.: Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Cleaner Prod. 40, 32–39 (2013)CrossRefGoogle Scholar
  32. Lohtia, R., Tian, F., Xie, Subramaniam, R.: Efficient consumer response in Japan: Industry concerns, current status, benefits, and barriers to implementation. J. Bus. Res. 57(3), 306–311 (2004)CrossRefGoogle Scholar
  33. McCormac, K., Wilkerson, T., Marrow, D., Davey, M., Shah, M., Yee, D.: Managing Risk in Your Organization with the SCOR Methodology, http://supply-chain.org/f/Supply%20Chain%20Risk%20Project%20Report.pdf(2008)
  34. Meyer, M.W.: Rethinking Performance Measurement: Beyond the Balanced Scorecard. Cambridge University Press, New York (2002)Google Scholar
  35. Moussa, A.M., Kamdem, J.S., Terraza, M.: Fuzzy risk adjusted performance measures: Application to Hedge funds, Insurance: Mathematics and Economics, Article in press (2012)Google Scholar
  36. Naini, S.G.J., Aliahmadi, A.R., Jafari-Eskandari, M.: Designing a mixed performance measurement system for environmental supply chain management using evolutionary game theory and balanced scorecard: a case study of an auto industry supply chain. Resour. Conserv. Recycl. 55(6), 593–603 (2011)CrossRefGoogle Scholar
  37. Najmi, A., Makui, A.: Providing hierarchical approach for measuring supply chain performance using AHP and DEMATEL methodologies. Int. J. Ind. Eng. Comput. 1, 199–212 (2010)Google Scholar
  38. Odette.: 2013. www.odette.org/html/home.htm. (Accessed:24/03/2013)
  39. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156, 445–455 (2004)CrossRefzbMATHGoogle Scholar
  40. Pan, N.F., Lin, T.C., Pan, N.H.: Estimating bridge performance based on a matrix-driven fuzzy linear regression model. Autom. Constr. 18(5), 578–586 (2009)CrossRefGoogle Scholar
  41. Qian, L., Ben-Arieh, D.: Parametric cost estimation based on activity-based costing: a case study for design and development of rotational parts. Int. J. Prod. Econ. 113(2), 805–818 (2008)CrossRefGoogle Scholar
  42. Ravi, V., Shankar, R., Tiwari, M.K.: Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Comput. Ind. Eng. 48(2), 327–356 (2005)CrossRefGoogle Scholar
  43. Saaty, T.L.: The Analytic Hierarchy Process. McGraw Hill. RWS Publications, New York (1980)zbMATHGoogle Scholar
  44. Sanayei, A., Mousavi, S.F., Yazdankhah, A.: Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst. Appl. 37(1), 24–30 (2010)CrossRefGoogle Scholar
  45. SCC (2010). Supply Chain Council SCOR Model Version 10.00—Appendix A., Available at: http://supply-chain.org/f/SCOR%208.0%20Metrics%20tables.pdf
  46. Schulze, M., Seuring, S., Ewering, C.: Applying activity-based costing in a supply chain environment. Int. J. Prod. Econ. 135(2), 716–725 (2012)CrossRefGoogle Scholar
  47. Shemshadi, A., Shirazi, H., Toreihi, M., Tarokh, M.J.: A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 38(10), 12160–12167 (2011)CrossRefGoogle Scholar
  48. Stapleton, D., Hanna, J.B., Yagla, S., Johnson Markussen, D.: Measuring logistics performance using the strategic profit model. Int. J. Logistics Manage. 13(1), 89–107 (2002)CrossRefGoogle Scholar
  49. Theeranuphattana, A., Tang, J.C., Khang, D.B.: An integrated approach to measuring supply chain performance. Ind. Eng. Manage. Syst. 11(1), 54–69 (2012)Google Scholar
  50. Tsai, W.-H., Hung, S.-J.: A fuzzy goal programming approach for green supply chain optimisation under activity-based costing and performance evaluation with a value-chain structure. Int. J. Prod. Res. 47(18), 4991–5017 (2009)CrossRefzbMATHGoogle Scholar
  51. van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241 (1983)CrossRefzbMATHGoogle Scholar
  52. Wang, G., Huang, S.H., Dismukes, J.P.: Product-driven supply chain selection using integrated multi-criteria decision-making methodology. Int. J. Prod. Econ. 91(1), 1–15 (2004)CrossRefGoogle Scholar
  53. Yalcin, N., Bayrakdaroglu, A., Kahraman, C.: Application of fuzzy multi-criteria decision making methods for financial performance evaluation of Turkish manufacturing industries. Expert Syst. Appl. 39(1), 350–364 (2012)CrossRefGoogle Scholar
  54. Yu, P.L.: A class of solutions for group decision problems. Manage. Sci. 19, 936–946 (1973)CrossRefzbMATHGoogle Scholar
  55. Yu, X., Guo, S., Guo, J., Huang, X.: Rank B2C e-commerce websites in e-alliance based on AHP and fuzzy TOPSIS. Expert Syst. Appl. 38(4), 3550–3557 (2011)CrossRefGoogle Scholar
  56. Zadeh, L.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  57. Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)zbMATHGoogle Scholar
  58. Zhihong, W., Yan, W., He, W.: Performance evaluation indicator system and model construction of the green supply chain. In: Intelligent system design and engineering applications, pp. 1042–1044 (2013)Google Scholar
  59. Zhou, Z., Zhao, L., Lui, S., Ma, C.: A generalized fuzzy DEA/AR performance assessment model. Math. Comput. Modell. 55(11/12), 2117–2128 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Industrial EngineeringIstanbul Technical UniversityMacka IstanbulTurkey

Personalised recommendations