Advertisement

Fuzzy Multiple Criteria Decision Making for Supply Chain Management

  • Yuh-Wen Chen
  • Moussa Larbani
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 313)

Abstract

Supply Chain Management (SCM) problem can be simply described as if an enterprise is requested to provide adequate commodities to its customers on time, it should be able to design its own appropriate purchase/production/transportation network at the lowest-cost level in time. Modeling SCM by fuzzy mathematical programming is an innovative and a popular issue, this chapter introduces fuzzy multiple attribute decision making (FMADM) and fuzzy multiple objective programming (FMOP) for the solutions of SCM.

Keywords

Supply chain Fuzzy Multiple attribute decision making Multiple objective programming 

References

  1. Aburto, L., Weber, R.: Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. 7, 136–144 (2007)CrossRefGoogle Scholar
  2. Aliev, R.A., Fazlollahi, B., Guirimov, B.G., Aliev, R.R.: Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Inf. Sci. 177, 4241–4255 (2007)CrossRefzbMATHGoogle Scholar
  3. Amid, A., Ghodsypour, S., O’Brien, C.: Fuzzy multi objective linear model for vender selection problem in a supply chain. Int. J. Prod. Econ. 104, 394–407 (2006)CrossRefGoogle Scholar
  4. Balan, S., Vrat, P., Kumar, P.: Reducing the Bullwhip effect in a supply chain with fuzzy logic approach. Int. J. Integr. Supply Manage. 3, 261–282 (2007)CrossRefGoogle Scholar
  5. Bhatnager, R., Sohal, A.: Supply chain competitiveness: measuring the impact of location factors, uncertainty and manufacturing practices. Technovation 25, 443–456 (2005)CrossRefGoogle Scholar
  6. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities. In: High Performance Computing and Communications, pp. 5–13. IEEE Press, New York (2008)Google Scholar
  7. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable cross-federation. In: IEEE 3rd International Conference on Cloud Computing, pp. 337–345. IEEE Press, New York (2010)Google Scholar
  8. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring efficiency of decision making unit. Eur. J. Oper. Res. 2, 429–444 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Chen, C.W., Wang, G.J., Yang, M.-Z., Chen, Y.W.: A multi-objective rfid model of transferring and tracking trauma patients after a large disaster. In: The 21st International Conference on Multiple Criteria Decision Making, http://mcdmsociety.org/conference2011/session/session82.html (2011)
  10. Chen, C.-W., Chen, Y.W., Wang, G.-J., Lin, P.-H., Larbani, M.: A cloud service to allocate emergent patients by affinity set. In Conference of EURO, p. 145. EURO Press, Vilnius (2012)Google Scholar
  11. Chen, C.-T.: A fuzzy approach to select the location of the distribution center. Fuzzy Sets Syst. 118, 65–73 (2001)CrossRefzbMATHGoogle Scholar
  12. Chen, S., Chang, P.: A mathematical programming to supply chain models with fuzzy parameters. Eng. Optim. 38, 647–669 (2006)CrossRefMathSciNetGoogle Scholar
  13. Chen, S.-J., Hwang C.-L.: Fuzzy multiple attribute decision making: methods and applications, lecture notes in economics and mathematical systems 375, Springer, Heidelberg (1992)Google Scholar
  14. Chen, Y.W.: Data envelopment analysis with fuzzy inputs and outputs. Int. J. Operations Quant. Manag. 7, 165–176 (2002)zbMATHGoogle Scholar
  15. Chen, Y.W., Larbani, M.: Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst. 157, 34–51 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. Chen, Y.W., Tzeng, G.H.: Fuzzy multi-objective approach to the supply chain model. In: Trzaskalik, T., Michnik, J. (eds.) Multiple Objective and Goal Programming: Advances in Soft Computing, pp. 221–234. Physica, Wurzburg (2002)CrossRefGoogle Scholar
  17. Chen, Y.W., Larbani, M., Chang, Y.-P.: Multi-objective data envelopment analysis. J. Oper. Res. Society 60, 1556–1566 (2009)CrossRefzbMATHGoogle Scholar
  18. Chen, Y.W., Larbani, M., Liu, C.-H.: Simulation of a supply chain game with multiple fuzzy goals. Fuzzy Sets Syst. 161, 1489–1510 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  19. Chen, Y.W., Wang, C.-H., Lin, S.-J.: A multi-objective geographic information system for transporting nuclear wastes. Omega 36, 363–372 (2008)CrossRefGoogle Scholar
  20. Chiang, C.I., Tzeng, G.H.: A multiple objective programming approach to data envelopment analysis. In: Shi, Y., Zeleny, M. (eds.) New Frontiers of Decision Making for the Information Technology Era, pp. 270–285. World Science Publishing Company, Singapore (2000)CrossRefGoogle Scholar
  21. Cho, D.W., Lee, Y.H., Ahna, S.H., Hwang, M.K.: A framework for measuring the performance of service supply chain management. J. Comput. Ind. Eng. 62, 801–818 (2012)CrossRefGoogle Scholar
  22. Chopra, S., Meindl, P.: Supply Chain Management. Prentice Hall, New York (2010)Google Scholar
  23. Chou, S.-Y., Chang, Y.-H., Shen, C.-Y.: A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. Eur. J. Oper. Res. 189, 132–145 (2008)CrossRefzbMATHGoogle Scholar
  24. Dobrila, P.: Simulation of supply chain behaviour and performance in an uncertain environment. Int. J. Prod. Econ. 71, 429–438 (2001)CrossRefGoogle Scholar
  25. Dobrila, P., Rajat, R., Radivoj, P.: Modelling and simulation of a supply chain in an uncertain environment. Eur. J. Oper. Res. 109, 299–309 (1998)CrossRefzbMATHGoogle Scholar
  26. Fang, S.-C., Nuttle, H.L.W., King, R.E., Wilson, J.R.: soft computing for softgoods supply chain analysis and decision support. In: Pastore, C., Sztandera, L. (eds.) Soft Computing in Textile Sciences, pp. 1–15. Physica, Wurzburg (2002)Google Scholar
  27. Giannaoccaro, I., Pontrandolfo, P., Scozzi, B.: A fuzzy echelon approach for inventory management. Eur. J. Oper. Res. 149, 185–196 (2003)CrossRefGoogle Scholar
  28. Golany, B.: An interactive MOLP procedure for the extension of DEA to effectiveness analysis. J. Operational Res. Soc. 39l, 725–734 (1988)Google Scholar
  29. Gunasekaran, N., Rathesh, S., Arunachalam, S., Koh, S.C.L.: Optimizing supply chain management using fuzzy approach. J. Manuf. Technol. Manage. 17, 737–749 (2006)CrossRefGoogle Scholar
  30. Gupta, A., Costas, D., Conor, M., McDonald, M.: Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Comput. Chem. Eng. 24, 2613–2621 (2000)CrossRefGoogle Scholar
  31. Harnisch, S., Buxmann, P.: Evaluating cloud services using methods of supplier selection. In: Business Information Systems: Lecture Notes in Business Information Processing, Vol. 157, pp. 1–13, Springer, Heidelberg (2013)Google Scholar
  32. He, C.-H., Gao, Y.-H., Yang, S.-H., Edwards, D.W.: Optimization of the process for recovering caprolactam from wastewater in a pulsed-sieve-plate column using green design methodologies. J. Loss Prev. Process Ind. 17, 195–204 (2004)CrossRefGoogle Scholar
  33. Hoshino, T., Yura, K., Hitomi, K.: Optimization analysis for recycle-oriented manufacturing systems. Int. J. Prod. Res. 33, 2069–2078 (1995)CrossRefzbMATHGoogle Scholar
  34. Hsu, C.W., Hu, A.H.: Green supply chain management in the electronic industry. Int. J. Sci. Technol. 5, 205–216 (2008)CrossRefGoogle Scholar
  35. Hua, Z., Li, S.: Impacts of demand uncertainty on retailer’s dominance and manufacturer-retailer supply chain cooperation. Omega 36, 697–714 (2008)CrossRefGoogle Scholar
  36. Huang, Z., Li, S.X.: Co-op advertising models in manufacturer-retailer supply chains: a game theory approach. Eur. J. Oper. Res. 135, 527–544 (2001)CrossRefzbMATHGoogle Scholar
  37. Jamalnia, A., Soukhakian, M.: A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Comput. Ind. Eng. 56, 1474–1486 (2008)CrossRefGoogle Scholar
  38. Kao, C., Hung, C.T.: Data envelopment analysis with common weights: the compromise solution approach. J. Operational Res. Soc. 56, 1196–1203 (2005)CrossRefzbMATHGoogle Scholar
  39. Karsak, E.E., Ahiska, S.S.: A common-weight MCDM framework for decision problems with multiple inputs and outputs. Lecture notes in computer science, Vol. 4705, pp. 779–790, Springer Heidelberg (2007)Google Scholar
  40. Krikke, H.R., Bloemhof-Ruwaard, J.M., Van Wassenhove, L.N.: Concurrent product and closed-loop supply chain design with an application to refrigerators. Int. J. Prod. Res. 41, 3689–3719 (2003)CrossRefzbMATHGoogle Scholar
  41. Kumar, M., Vrat, P., Shankar, R.: A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput. Ind. Eng. 46, 69–85 (2004)CrossRefGoogle Scholar
  42. Li, S.X., Huang, Z., Zhu, J., Chau, P.Y.K.: Cooperative advertising, game theory and manufacturer–retailer supply chains. Omega 30, 347–357 (2002)CrossRefGoogle Scholar
  43. Li, X.-B., Reeves, G.R.: A multiple criteria approach to data envelopment analysis. Eur. J. Oper. Res. 115, 507–517 (1999)CrossRefzbMATHGoogle Scholar
  44. Liang, T.: Applying fuzzy goal programming to production/transportation planning decisions in a supply chain. Int. J. Syst. Sci. 38, 293–304 (2007)CrossRefzbMATHGoogle Scholar
  45. Lin, R.-J.: Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Cleaner Prod. 40, 32–39 (2013)CrossRefGoogle Scholar
  46. Lindner, M., Marquez, F.G., Chapman, C., Clayman, S., Henriksson, D., Elmroth, E.: The cloud supply chain: a framework for information, monitoring, accounting and billing. In: 2nd International ICST Conference on Cloud Computing, pp. 25–28. Barcelona, Spain (2010)Google Scholar
  47. Liu, S., Kao, C.: Solving fuzzy transportation problems based on extension principal. Eur. J. Oper. Res. 153, 661–674 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  48. Lou, S.-F., Si, Y.-W.: Fuzzy adaptive agent for supply chain management. In Proceeding of IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 313–320 (2006)Google Scholar
  49. Madu, C.N., Kuei, C., Madu, I.E.: A hierarchic metric approach for integration of green issues in manufacturing: a paper recycling application. J. Environ. Manage. 64, 261–272 (2002)CrossRefGoogle Scholar
  50. Nagano, T., Yamaguchi, T., Fukugawa, T.: Output fuzzy number of DEA. Communication Oper. Res. Soc. Japan 40, 425–429 (1995)Google Scholar
  51. Nagarajan, M., Sošić, G.: Game-theoretic analysis of cooperation among supply chain agents: review and extensions. Eur. J. Oper. Res. 187, 719–745 (2008)CrossRefzbMATHGoogle Scholar
  52. Ning, Y., Tang, W., Zhao, R.: Multiproduct aggregate production planning in fuzzy random environments. World J. Model. Simul. 2, 312–321 (2006)Google Scholar
  53. Paksoy, T., Pehlivan, N.Y., Özceylan, E.: Fuzzy multi-objective optimization of a green supply chain network with risk management that includes environmental hazards. Hum. Ecol. Risk Assess. 18, 1120–1151 (2012)CrossRefGoogle Scholar
  54. Pan, Y., Yang C., Li P.: Applying the model of game with fuzzy coalition to the optimum configuration of cooperation supply chain. In: Proceeding of Control Conference, pp. 1336–1340 (2006)Google Scholar
  55. Pang, B., Bai, S.: An integrated fuzzy synthetic evaluation approach for supplier selection based on analytic network process. J. Intell. Manuf. 24, 163–174 (2013)CrossRefGoogle Scholar
  56. Peng, J.: Research on the optimization of green suppliers based on AHP and GRA. J. Inf. Comput. Sci. 9, 173–182 (2012)Google Scholar
  57. Pramod, V.R., Banwet, D.K.: Fuzzy ISM for analyzing the inhibitors of a telecom service supply chain. Int. J. Inf. Syst. Supply Chain Manage. 6, 77–98 (2013)CrossRefGoogle Scholar
  58. Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell, Oxford (1989)zbMATHGoogle Scholar
  59. Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131, 1–15 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  60. Sarı, I.U., Öztayşi, B.: Forecasting energy demand using fuzzy seasonal time series: atlantis computational intelligence systems. Comput. Intell. Syst. Ind. Eng. 6, 251–269 (2012)CrossRefGoogle Scholar
  61. Seiford, L.: Data envelopment analysis: the evolution of the state of the art (1978-1995). J. Prod. Anal. 7, 99–137 (1996)CrossRefGoogle Scholar
  62. Selim, H., Araz, C., Ozkarahan, I.: Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transp. Res. Part E 44, 396–419 (2006)CrossRefGoogle Scholar
  63. Shahgholian, K., Shahraki, A., Vaezi, Z., Hajihosseini, H.: A model for supplier selection based on fuzzy multi-criteria group decision making. Afr. Bus. Manage. 6, 6254–6265 (2012)Google Scholar
  64. Smirnov, A.V., Sheremetov, L.B., Chilov, N., Cortes, J.R.: Soft-computing technologies for configuration of cooperative supply chain. Appl. Soft Comput. 4, 87–107 (2004)CrossRefGoogle Scholar
  65. Srivastava, S.K.: Green supply-chain management: a state-of-the-art literature review. Int. J. Manage. Rev. 9, 53–80 (2007)CrossRefGoogle Scholar
  66. Teunter, R.H., Vlachos, D.: On the necessity of a disposal option for returned items that can be remanufactured. Int. J. Prod. Econ. 75, 257–266 (2002)CrossRefGoogle Scholar
  67. Tozan, H., Vayvay, O.: analyzing demand variability through sc using fuzzy regression and grey GM (1,1) forecasting model. In: Proceeding of Information Sciences, pp. 1088–1094 (2007)Google Scholar
  68. Uno, T., Katagiri, H., Kato, K.: A stackelberg location on a network with fuzzy random demand quantities using possibility measure. Intell. Decis. Technol. Smart Innovation, Syst. Technol. 15, 67–75 (2012)CrossRefGoogle Scholar
  69. Vachon, S., Klassen, R.D.: Environmental management and manufacturing performance: The role of collaboration in the supply chain. Int. J. Prod. Econ. 111, 299–315 (2008)CrossRefGoogle Scholar
  70. Wang, Y., Luanxiangjing, Wu, C.: The green supply chain evaluation and construction of a coal chemical enterprise in Hebei province which based on fuzzy-AHP method. Am. J. Eng. Technol. Res. 11, 2365–2370 (2011)Google Scholar
  71. Wu, C.H., Kuo, T.C., Lu, Y.Y.: Environmental principles applicable to green supplier evaluation by using multi-objective decision analysis. Int. J. Prod. Res. 45, 4317–4331 (2007)CrossRefzbMATHGoogle Scholar
  72. Xiong, G., Koivisto, H.: Research on fuzzy inventory control under supply chain management environment. In: Computational Science ICCS, Lecture Notes in Computer Science, Vol. 2658, pp. 907–916 (2003)Google Scholar
  73. Yalabik, B., Petruzzi, N.C., Chhajed, D.: An integrated product returns model with logistics and marketing coordination. Eur. J. Oper. Res. 161, 162–182 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  74. Yang, J.: Fuzzy integrative performance evaluation for supply chain system. In: Proceeding of ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Vol. 2, pp. 47–52 (2007)Google Scholar
  75. Yang, J.L., Chiu, H.N., Tzeng, G.H., Yeh, R.Y.: Vendor selection by integrated fuzzy MCDM techniques with independent and interdependent relationships. Inf. Sci. 178, 4166–4183 (2008)CrossRefzbMATHGoogle Scholar
  76. Yong, Y., Zhang, Y-.H.: Fuzzy evaluating method for channel research in e-supply chain. In: Proceedings of the International Seminar on Business and Information Management, Vol. 2, pp. 96–99 (2008)Google Scholar
  77. Yu, M.-C., Goh, M., Lin, H.-C.: Fuzzy multi-objective vendor selection under lean procurement. Eur. J. Oper. Res. 219, 305–311 (2012)CrossRefzbMATHGoogle Scholar
  78. Zarandi, M.F., Türkşen, I., Saghiri, S.: Supply chain: crisp and fuzzy aspects. Int. J. Appl. Math. Comput. Sci. 12, 423–435 (2002)Google Scholar
  79. Zhou, C., Zhao, R., Tang, W.: Two-echelon supply chain games in a fuzzy environment. Comput. Ind. Eng. 55, 390–405 (2008)CrossRefGoogle Scholar
  80. Zimmerman, H.J.: Fuzzy Set Theory and Its Applications. Kluwer-Nijhoff, Boston (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Industrial Engineering and ManagementDa-Yeh UniversityChanghuaTaiwan
  2. 2.Department of Business Administration, Kulliyyah of Economics and Management SciencesIIUM UniversitySelayangMalaysia

Personalised recommendations