Skip to main content

Numerical Solution for a Kind of Nonlinear Telegraph Equations Using Radial Basis Functions

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 391))

Abstract

In this paper, we propose a numerical scheme to solve a kind of the nonlinear telegraph equation by using the Kansa’s method with Radial Basis Functions (RBFs). From the numerical results of experiments presented in this paper, we can get that the accuracy between the numerical solutions and the analytical solutions are valid. In this paper, we also give the analysis of the parameter c in IMQ radical basis function for the results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lai, S.Y.: The asymptotic theory of solutions for a perturbed telegraph wave equation and its application. Appl. Math. Mech. 43(7), 657–662 (1997)

    MATH  Google Scholar 

  2. Kolesov, A.Y., Rozov, N.K.: Parametric excitation of high-mode oscillations for a non-linear telegraph equation. Sbornik Mathematics 191(7-8), 1147–1169 (2001)

    MATH  Google Scholar 

  3. Dehghan, M.: A numerical method for solving the hyperbolic telegraph equation. InterScience 24, 1080–1093 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Gao, F., Chi, C.: Unconditionally stable difference schemes for a one space dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Alonso, J.M., Mawhi, J., Ortega, R.: Bounded solutions of second order semilinear evolution equations and applications to the telegraph equation. J. Math. Pures Appl. 78, 49–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shang, Y.D.: Explicit and exact solutions for a class of nonlinear wave equations. Acta Math. Appl. Sinica 23, 21–30 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Fan, E.G., Zhang, H.Q.: The solitary wave solutions for a class of nonlinear wave equation. Chin. Phys. Soc. 46, 1245–1248 (1997)

    MathSciNet  Google Scholar 

  8. Dehghan, M.: Parameter determination in a partial differential equation from the overspecified data. Math. Comput. Model. 41, 196–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition. Int. J Non-Linear Sci. Numer. Simul. 7, 447–450 (2006)

    Article  Google Scholar 

  10. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71, 16–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, G.R., Gu, Y.T.: Boundary meshfree methods based on the boundary point methods. Eng. Anal. Bound. Elem. 28, 475–487 (2004)

    Article  MATH  Google Scholar 

  12. Jiang, T.S., Li, M., Chen, C.S.: The Method of Particular Solutions for Solving Inverse Problems of a Nonhomogeneous Convection-Diffusion Equation with Variable Coefficients. Numerical Heat Transfer, Part A: Applications 61(5), 338–352 (2012)

    Article  Google Scholar 

  13. Jiang, T.S., Jiang, Z.L., Jospeh, K.: A numerical method for one-dimensional time-dependent Schrodinger equation using radial basis functions. Internatioal Journal of Computational Methods (accepted, 2013)

    Google Scholar 

  14. Li, M., Jiang, T.S., Hon, Y.C.: A meshless method based on RBFs method for nonhomogeneous backward heat conduction problem. Engineering Analysis with Boundary Elements 34(9), 785–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, G.R.: Mesh Free Method: Moving Beyond the Finite Element Methods. CRC Press, Florida (2002)

    Book  Google Scholar 

  16. Liu, G.R., Liu, M.B.: Smooth Pariticle Hydrodynamics-a meshfree particle method. World Scientific, Singapore (2003)

    Book  Google Scholar 

  17. Schaback, R.: Error estimates and condition numbers for radical basis function interpolation. J. Advances in Computational Mathematics 3(7), 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, Z.M., Schaback, R.: Local error estimates for radical basis function interpolation of scattered data. J. IMA Journal of Numerical Analysis 13(1), 13–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Su, L., Jiang, Z.W., Jiang, T.S. (2013). Numerical Solution for a Kind of Nonlinear Telegraph Equations Using Radial Basis Functions. In: Yang, Y., Ma, M., Liu, B. (eds) Information Computing and Applications. ICICA 2013. Communications in Computer and Information Science, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53932-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53932-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53931-2

  • Online ISBN: 978-3-642-53932-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics