Skip to main content

Bone and Cartilage Tissue Engineering

  • Chapter
  • First Online:
Gene Therapy for Cartilage and Bone Tissue Engineering

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 1076 Accesses

Abstract

Bone and cartilage are important components in the skeleton system, providing the major structure of the body of vertebrates and conferring protection and support of soft tissues. This chapter briefly reviews the constituents of bones and articular cartilages as well as cells associated with bone/cartilage healing. This chapter further introduces the concepts and critical elements of tissue engineering for the repair/regeneration of bone and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering-Part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 19:308–326

    Article  Google Scholar 

  2. Buckwalter JA, Einhorn TA, Bolander ME, Cruess RL (1996) Healing of the musculoskeletal tissues. In: Bucholz RW, Heckman JD, Court-Brown C, Tornetta P, Koval KJ, Wirth MA (eds) 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 261–304

    Google Scholar 

  3. Ross MH, Reith EJ, Romrell LJ (1989) Histology: a text and atlas. Williams & Wilkins, Baltimore

    Google Scholar 

  4. Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5:685–697

    Article  Google Scholar 

  5. Gilbert SF (2000) Developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  6. Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90A:99–110

    Article  Google Scholar 

  7. Phillips JE, Gersbach CA, Garcia AJ (2007) Virus-based gene therapy strategies for bone regeneration. Biomaterials 28:211–229

    Article  Google Scholar 

  8. Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y et al (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16:13–20

    Article  Google Scholar 

  9. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13:1135–1150

    Article  Google Scholar 

  10. Zimmermann G, Wagner C, Schmeckenbecher K, Wentzensen A, Moghaddam A (2009) Treatment of tibial shaft non-unions: bone morphogenetic proteins versus autologous bone graft. Injury 40(Suppl 3):S50–S53

    Article  Google Scholar 

  11. Tseng SS, Lee MA, Reddi H (2008) Nonunions and the potential of stem cells in fracture-healing. J Bone Joint Surg Am 90A:92–98

    Article  Google Scholar 

  12. Marino JT, Ziran BH (2010) Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am 41:15–26

    Article  Google Scholar 

  13. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19

    Article  Google Scholar 

  14. Gamradt SC, Lieberman JR (2004) Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 32:136–147

    Article  Google Scholar 

  15. Eward WC, Kontogeorgakos V, Levin LS, Brigman BE (2010) Free vascularized fibular graft reconstruction of large skeletal defects after tumor resection. Clin Orthop Relat Res 468:590–598

    Article  Google Scholar 

  16. Smith JO, Aarvold A, Tayton ER, Dunlop DG, Oreffo RO (2011) Skeletal tissue regeneration: current approaches, challenges, and novel reconstructive strategies for an aging population. Tissue Eng Part B Rev 17:307–320

    Article  Google Scholar 

  17. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 87:896–902

    Article  Google Scholar 

  18. Szpalski C, Barr J, Wetterau M, Saadeh PB, Warren SM (2010) Cranial bone defects: current and future strategies. Neurosurg Focus 29:E8

    Article  Google Scholar 

  19. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  Google Scholar 

  20. Shegarfi H, Reikeras O (2009) Bone transplantation and immune response. J Orthop Surg 17:206–211

    Google Scholar 

  21. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS et al (1990) Progressive development of the rat osteoblast phenotype in vitro – reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430

    Article  Google Scholar 

  22. Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X et al (2012) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nat Med 17:1594–1601

    Article  Google Scholar 

  23. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27

    Article  Google Scholar 

  24. Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42:556–561

    Article  Google Scholar 

  25. Trippel SB, Ghivizzani SC, Nixon AJ (2004) Gene-based approaches for the repair of articular cartilage. Gene Ther 11:351–359

    Article  Google Scholar 

  26. Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12:69–78

    Article  Google Scholar 

  27. Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26:181–189

    Article  Google Scholar 

  28. Barbero A, Grogan S, Schafer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484

    Article  Google Scholar 

  29. Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921

    Article  Google Scholar 

  30. Gannon AR, Nagel T, Kelly DJ (2012) The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthritis Cartilage 20:1417–1425

    Article  Google Scholar 

  31. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468

    Article  Google Scholar 

  32. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  Google Scholar 

  33. Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R et al (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthritis Cartilage 9:654–663

    Article  Google Scholar 

  34. Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27:307–314

    Article  Google Scholar 

  35. Van Manen MD, Nace J, Mont MA (2012) Management of primary knee osteoarthritis and indications for total knee arthroplasty for general practitioners. J Am Osteopath Assoc 112:709–715

    Google Scholar 

  36. Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G et al (2009) Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials 30:2683–2693

    Article  Google Scholar 

  37. Kirn-Safran CB, Gomes RR, Brown AJ, Carson DD (2004) Heparan sulfate proteoglycans: coordinators of multiple signaling pathways during chondrogenesis. Birth Defects Res C Embryo Today 72:69–88

    Article  Google Scholar 

  38. Tang QO, Shakib K, Heliotis M, Tsiridis E, Mantalaris A, Ripamonti U (2009) TGF-beta3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 9:689–701

    Article  Google Scholar 

  39. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  Google Scholar 

  40. Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen ISY, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721

    Article  Google Scholar 

  41. Virk MS, Conduah A, Park SH, Liu N, Sugiyama O, Cuomo A et al (2008) Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42:921–931

    Article  Google Scholar 

  42. Lattanzi W, Parrilla C, Fetoni A, Logroscino G, Straface G, Pecorini G et al (2008) Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther 15:1330–1343

    Article  Google Scholar 

  43. Zhang XL, Mao ZB, Yu CL (2004) Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res 22:742–750

    Article  Google Scholar 

  44. Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor- producing mesenchymal cells. Arthritis Rheum 48:430–441

    Article  Google Scholar 

  45. Cao L, Yang F, Liu G, Yu D, Li H, Fan Q et al (2011) The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32:3910–3920

    Article  Google Scholar 

  46. Sheyn D, Ruthemann M, Mizrahi O, Kallai I, Zilberman Y, Tawackoli W et al (2010) Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion. Tissue Eng Part A 16:3679–3686

    Article  Google Scholar 

  47. Lee J-M, Im G-I (2012) SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials 33:2016–2024

    Article  Google Scholar 

  48. Lin C-Y, Lin K-J, Kao C-Y, Chen M-C, Yen T-Z, Lo W-H et al (2011) The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 32:6505–6514

    Article  Google Scholar 

  49. Jukes JM, Moroni L, van Blitterswijk CA, de Boer J (2008) Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells. Tissue Eng Part A 14:135–147

    Article  Google Scholar 

  50. Toh WS, Lee EH, Guo X-M, Chan JKY, Yeow CH, Choo AB et al (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31:6968–6980

    Article  Google Scholar 

  51. Ye J-H, Xu Y-J, Gao J, Yan S-G, Zhao J, Tu Q et al (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076

    Article  Google Scholar 

  52. Mahmoudifar N, Doran PM (2010) Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 31:3858–3867

    Article  Google Scholar 

  53. Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interf 5:3847–3854

    Article  Google Scholar 

  54. Chen H-C, Chang Y-H, Chuang C-K, Lin C-Y, Sung L-Y, Wang Y-H et al (2009) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30:674–681

    Article  Google Scholar 

  55. Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C (2010) In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31:5953–5965

    Article  Google Scholar 

  56. Williams CG, Kim TK, Taboas A, Malik A, Manson P, Elisseeff J (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688

    Article  Google Scholar 

  57. Thorpe SD, Buckley CT, Vinardell T, O’Brien FJ, Campbell VA, Kelly DJ (2010) The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng 38:2896–2909

    Article  Google Scholar 

  58. Bright C, Park YS, Sieber AN, Kostuik JP, Leong KW (2006) In vivo evaluation of plasmid DNA encoding OP-1 protein for spine fusion. Spine (Phila Pa 1976) 31:2163–2172

    Article  Google Scholar 

  59. Deng T, Lv J, Pang J, Liu B, Ke J (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. doi:10.1002/term.556

  60. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222

    Article  Google Scholar 

  61. Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH et al (2006) Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials 27:1876–1888

    Article  Google Scholar 

  62. Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406

    Article  Google Scholar 

  63. Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z (2010) TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 95:982–992

    Article  Google Scholar 

  64. Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016

    Article  Google Scholar 

  65. Wang XH, Cui FZ, Feng QL, Li JC, Zhang YH (2003) Preparation and characterization of collagen/chitosan matrices as potential biomaterials. J Bioact Compat Polym 18:453–467

    Article  Google Scholar 

  66. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N et al (2006) Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials 27:6138–6149

    Article  Google Scholar 

  67. Li ZS, Zhang MQ (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res 75A:485–493

    Article  Google Scholar 

  68. Zhao L, Chang J (2004) Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med 15:625–629

    Article  Google Scholar 

  69. Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M (2011) State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 5:e36–e51

    Article  Google Scholar 

  70. Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15:231–241

    Article  Google Scholar 

  71. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III-50–III-55

    Article  Google Scholar 

  72. Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. In: Haycock JW (ed) 3D cell culture, vol 695. Humana Press, New York, pp 17–39

    Chapter  Google Scholar 

  73. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29:174–186

    Article  Google Scholar 

  74. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ (2013) Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res B Appl Biomater 101:187–199

    Article  Google Scholar 

  75. Boden SD (2005) The ABCs of BMPs. Orthop Nurs 24:49–52

    Article  Google Scholar 

  76. Alvarez J, Sohn P, Zeng X, Doetschman T, Robbins DJ, Serra R (2002) TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression. Development 129:1913–1924

    Google Scholar 

  77. van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB (2002) Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 10:631–637

    Article  Google Scholar 

  78. Redini F, Galera P, Mauviel A, Loyau G, Pujol JP (1988) Transforming growth factor-β1 stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett 234:172–176

    Article  Google Scholar 

  79. Andrews HJ, Edwards TA, Cawston TE, Hazleman BL (1989) Transforming growth factor-β1 causes partial inhibition of interleukin 1-stimulated cartilage degradation in vitro. Biochem Biophys Res Commun 162:144–150

    Article  Google Scholar 

  80. Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB et al (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13:1621–1630

    Article  Google Scholar 

  81. Li J, Kim KS, Park JS, Elmer WA, Hutton WC, Yoon ST (2003) BMP-2 and CDMP-2: stimulation of chondrocyte production of proteoglycan. J Orthop Sci 8:829–835

    Article  Google Scholar 

  82. Park Y, Sugimoto M, Watrin A, Chiquet M, Hunziker EB (2005) BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13:527–536

    Article  Google Scholar 

  83. Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR et al (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149–162

    Article  Google Scholar 

  84. Merino R, Macias D, Ganan Y, Economides AN, Wang X, Wu Q et al (1999) Expression and function of GDF-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45

    Article  Google Scholar 

  85. Gruber R, Mayer C, Bobacz K, Krauth MT, Graninger W, Luyten FP et al (2001) Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells. Endocrinology 142:2087–2094

    Google Scholar 

  86. Klein-Nulend J, Semeins CM, Mulder JW, Winters HAH, Goei SW, Ooms ME et al (1998) Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng 4:305–313

    Article  Google Scholar 

  87. Louwerse RT, Heyligers IC, Klein-Nulend J, Sugihara S, van Kampen GP, Semeins CM et al (2000) Use of recombinant osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats. J Biomed Mater Res 49:506–516

    Article  Google Scholar 

  88. Harvey AK, Yu XP, Frolik CA, Chandrasekhar S (1999) Parathyroid hormone-(1–34) enhances aggrecan synthesis via an insulin-like growth factor-I pathway. J Biol Chem 274:23249–23255

    Article  Google Scholar 

  89. Erdmann S, Muller W, Bahrami S, Vornehm SI, Mayer H, Bruckner P et al (1996) Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J Cell Biol 135:1179–1191

    Article  Google Scholar 

  90. Bi WM, Deng JM, Zhang ZP, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  Google Scholar 

  91. Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290

    Article  Google Scholar 

  92. Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127:3141–3159

    Google Scholar 

  93. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    Article  Google Scholar 

  94. Evans CH, Gouze E, Gouze JN, Robbins PD, Ghivizzani SC (2006) Gene therapeutic approaches–transfer in vivo. Adv Drug Deliv Rev 58:243–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Hu, YC. (2014). Bone and Cartilage Tissue Engineering. In: Gene Therapy for Cartilage and Bone Tissue Engineering. SpringerBriefs in Bioengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53923-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53923-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53922-0

  • Online ISBN: 978-3-642-53923-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics