Advertisement

Change Itemset Mining in Data Streams

  • Minmin Zhang
  • Gillian Dobbie
  • Yun Sing Koh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)

Abstract

Data stream mining is becoming very important in many application areas, such as the stock market. A data stream consists of an ordered sequence of instances and because there are usually a large number of instances along with limited computing and storage capabilities, algorithms that read the data only once are preferred. There has been some research that focuses on finding when a concept has changed, given some knowledge about the previous instances in the data stream, but little on determining the characteristics of that change. In this paper we concentrate on finding the characteristics of the changes that occur, using frequent itemset mining techniques. We propose an approach, which combines both heuristic and statistical approaches, that analyses changes that have occurred within a stream at itemset level and identify three types of change: extension, reduction, and support fluctuation. We evaluate our algorithm using both synthetic and real world datasets.

Keywords

Change Mining Data Stream Frequent Itemset Hoeffding Bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roddick, J.F., Spiliopoulou, M., Lister, D., Ceglar, A.: Higher order mining. SIGKDD Explor. Newsl. 10(1), 5–17 (2008)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Psaila, G.: Active data mining. In: Fayyad, U.M., Uthurusamy, R. (eds.) KDD, pp. 3–8. AAAI Press (1995)Google Scholar
  3. 3.
    Au, W.H., Chan, K.C.C.: Mining changes in association rules: a fuzzy approach. Fuzzy Sets Syst. 149(1), 87–104 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Steinbrecher, M., Kruse, R.: Identifying temporal trajectories of association rules with fuzzy descriptions. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1–6 (2008)Google Scholar
  5. 5.
    Liu, B., Ma, Y., Lee, R.: Analyzing the interestingness of association rules from the temporal dimension. In: Proceedings of the 2001 IEEE International Conference on Data Mining. ICDM 2001, pp. 377–384. IEEE Computer Society, Washington, DC (2001)Google Scholar
  6. 6.
    Böttcher, M., Höppner, F., Spiliopoulou, M.: On exploiting the power of time in data mining. SIGKDD Explor. Newsl. 10(2), 3–11 (2008)CrossRefGoogle Scholar
  7. 7.
    Baron, S., Spiliopoulou, M., Günther, O.: Efficient monitoring of patterns in data mining environments. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 253–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Baron, S., Spiliopoulou, M.: Monitoring the evolution of web usage patterns. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 181–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Song, H.S., Kim, J.K., Kim, S.H.: Mining the change of customer behavior in an internet shopping mall. Expert Systems with Applications 21(3), 157–168 (2001)CrossRefGoogle Scholar
  10. 10.
    Chen, M.C., Chiu, A.L., Chang, H.H.: Mining changes in customer behavior in retail marketing. Expert Syst. Appl. 28(4), 773–781 (2005)CrossRefGoogle Scholar
  11. 11.
    Leung, C.S., Khan, Q.: Dstree: A tree structure for the mining of frequent sets from data streams. In: Sixth International Conference on Data Mining, ICDM 2006, pp. 928–932 (2006)Google Scholar
  12. 12.
    Koh, Y.S., Dobbie, G.: Spo-tree: Efficient single pass ordered incremental pattern mining. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 265–276. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerging patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13–29 (1963)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Minmin Zhang
    • 1
  • Gillian Dobbie
    • 1
  • Yun Sing Koh
    • 1
  1. 1.Department of Computer ScienceThe University of AucklandNew Zealand

Personalised recommendations