Advertisement

Vertex Unique Labelled Subgraph Mining for Vertex Label Classification

  • Wen Yu
  • Frans Coenen
  • Michele Zito
  • Subhieh El Salhi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)

Abstract

A mechanism is presented to classify (predict) the values associated with vertices in a given unlabelled graph or network. The proposed mechanism is founded on the concept of Vertex Unique Labelled Subgraphs (VULS). Two algorithms are presented. The first, the minimal Right-most Extension VULS Mining (minREVULSM) algorithm, is used to identify all minimal VULS in a given graph or nework. The second, the Match-Voting algorithm, is used to achieve the desired VULS based classification (prediction). The reported experimental evaluation demonstrates that by using the minimal VULS concept good results can be obtained in the context of a sheet metal forming application used for evaluation purposes.

Keywords

Data mining Graph mining Vertex unique labelled subgraph mining Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cafuta, G., Mole, N., Tok, B.: An enhanced displacement adjustment method: Springback and thinning compensation. Materials and Design 40, 476–487 (2012)CrossRefGoogle Scholar
  2. 2.
    Firat, M., Kaftanoglu, B., Eser, O.: Sheet metal forming analyses with an emphasis on the springback deformation. Journal of Materials Processing Technology 196(1-3), 135–148 (2008)CrossRefGoogle Scholar
  3. 3.
    Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Allwood, J., Duflou, J.: Asymmetric single point incremental forming of sheet metal. CIRP Annals Manufacturing Technology 54(2), 88–114 (2005)CrossRefGoogle Scholar
  4. 4.
    Liu, W., Liang, Z., Huang, T., Chen, Y., Lian, J.: Process optimal ccontrol of sheet metal forming springback based on evolutionary strategy. In: 7th World Congress on Intelligent Control and Automation, WCICA 2008, pp. 7940–7945 (June 2008)Google Scholar
  5. 5.
    Nasrollahi, V., Arezoo, B.: Prediction of springback in sheet metal components with holes on the bending area, using experiments, finite element and neural networks. Materials and Design 36, 331–336 (2012)CrossRefGoogle Scholar
  6. 6.
    Salhi, S., Coenen, F., Dixon, C., Khan, M.: Identification of correlations between 3d surfaces using data mining techniques: Predicting springback in sheet metal forming. In: Proceedings Proc. AI 2012, pp. 391–404. Springer, Cambridge (2012)Google Scholar
  7. 7.
    Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 International Conference on Data Mining, p. 721 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wen Yu
    • 1
  • Frans Coenen
    • 1
  • Michele Zito
    • 1
  • Subhieh El Salhi
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations