Tree-Based Mining for Discovering Patterns of Reposting Behavior in Microblog

  • Huilei He
  • Zhiwen Yu
  • Bin Guo
  • Xinjiang Lu
  • Jilei Tian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)


Discovering behavior patterns is important in online human interaction understanding (e.g., how information is shared through reposting, what roles do people play in a conversation). As reposting has become the key mechanism for information propagation in social media (e.g. microblog) and contributes a lot to users’ participation in online events, it is important to explore how repost works. Different from previous studies, we make two contributions in this work: firstly, we analyze the patterns of reposting behavior from the perspective of microblog user and employ a special mining method which successfully find interesting results; secondly, our analysis is based on the Sina Weibo, which has different characteristics with Twitter. Specifically, information flow for a certain message in Weibo is represented as a tree. Tree-based pattern mining algorithm is presented to extract a number of interesting patterns which are useful for understanding information diffusion in the Weibo network.


Information propagation Reposting behavior Microblog Treebased pattern mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: Proc. of HICSS 2010 (2010)Google Scholar
  2. 2.
    Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: Proc. of SocialCom 2010 (2010)Google Scholar
  3. 3.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: An analysis of a microblogging community. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L., McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS, vol. 5439, pp. 118–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proc. of WWW 2010 (2010)Google Scholar
  5. 5.
    Zhou, Z., Bandari, R., Kong, J.S., Qian, H., Roychowdhury, V.: Information resonance on twitter: Watching Iran. In: Proc. of SOMA 2010 (2010)Google Scholar
  6. 6.
    Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. of SIAM 2002 (2002)Google Scholar
  7. 7.
    Yang, Z., Guo, J., Cai, K., Tang, J., Li, J., Zhang, L., Su, Z.: Understanding retweeting behaviors in social networks. In: Proc. of CIKM 2010 (2010)Google Scholar
  8. 8.
    Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in twitter. In: ICWSM 2010 (2010)Google Scholar
  9. 9.
    Wang, C., Guan, X., Qin, T., Li, W.: Who are active? An in-depth measurement on user activity characteristics in sina microblogging. In: GLOBECOM (2012)Google Scholar
  10. 10.
  11. 11.
    Qu, Y., Huang, C., Zhang, P., Zhang, J.: Microblogging after a major disaster in China: a case study of the 2010 Yushu earthquake. In: Proc. of CSCW 2011 (2011)Google Scholar
  12. 12.
    Yu, L.L., Asur, S., Huberman, B.A.: Artificial Inflation: The True Story of Trends in Sina Weibo. In: J. arXiv preprint arXiv:1202.0327 (2012)Google Scholar
  13. 13.
    Bentwood, J.: Distributed influence: Quantifying the impact of social media. Edelman (2008)Google Scholar
  14. 14.
    Tinati, R., Carr, L., Hall, W., Bentwood, J.: Identifying communicator roles in twitter. In: Proc. of MSND 2012 (2012)Google Scholar
  15. 15.
    Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Discovery of frequent tree structured patterns in semistructured web documents. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, p. 47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Wang, J.T.L., Shapiro, B.A., Shasha, D., Zhang, K., Chang, C.Y.: Automated discovery of active motifs in multiple RNA seconary structures. In: Proc. KDD 1996 (1996)Google Scholar
  17. 17.
    Ma, H., Qian, W., Xia, F., et al.: Towards modeling popularity of microblogs. J. Frontiers of Computer Science (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huilei He
    • 1
  • Zhiwen Yu
    • 1
  • Bin Guo
    • 1
  • Xinjiang Lu
    • 1
  • Jilei Tian
    • 2
  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.NokiaChina

Personalised recommendations