The Spontaneous Behavior in Extreme Events: A Clustering-Based Quantitative Analysis

  • Ning Shi
  • Chao Gao
  • Zili Zhang
  • Lu Zhong
  • Jiajin Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)


Social media records the pulse of social discourse and drives human behaviors in temporal and spatial dimensions, as well as the structural characteristics. These online contexts give us an opportunity to understand social perceptions of people in the context of certain events, and can help us improve disaster relief. Taking Twitter as data source, this paper quantitatively measures exogenous and endogenous social influences on collective behaviors in different events based on standard fluctuation scaling method. Different from existing studies utilizing manual keywords to denote events, we apply a clustering-based event analysis to identify the core event and its related episodes in a hashtag network. The statistical results show that exogenous factors drive the amount of information about an event and the endogenous factors play a major role in the propagation of hashtags.


Social Medium Extreme Event Collective Behavior Core Node Spontaneous Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media to enhance emergency situation awareness. IEEE Intelligent Systems 27(6), 52–59 (2012)CrossRefGoogle Scholar
  2. 2.
    Adam, N.R., Shafiq, B., Staffin, R.: Spatial computing and social media in the context of disaster management. IEEE Intelligent Systems 27(6), 90–96 (2012)CrossRefGoogle Scholar
  3. 3.
    Jones, J.H., Salathe, M.: Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1). PLoS ONE 4(12), e8032 (2009)Google Scholar
  4. 4.
    Oh, O., Kwon, K.H., Rao, H.R.: An exploration of social media in extreme events: rumor theory and twitter during the Haiti earthquake 2010. In: Proceedings of 31st International Conference on Information Systems (ICIS 2010), paper 231 (2010)Google Scholar
  5. 5.
    Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proceedings of the National Academy of Sciences 107(43), 18375–18380 (2010)CrossRefGoogle Scholar
  6. 6.
    Lehmann, J., Goncalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in Twitter. In: Proceedings of the 21st World Wide Web Conference (WWW 2012), pp. 251–260 (2012)Google Scholar
  7. 7.
    Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza a H1N1 pandemic. PLoS ONE 6(5), e19467 (2011)Google Scholar
  8. 8.
    Sasahara, K., Hirata, Y., Toyoda, M., Kitsuregawa, M., Aihara, K.: Quantifying collective attention from Tweet stream. PLoS ONE 8(4), e61823 (2013)Google Scholar
  9. 9.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences of the United States of America 105(41), 15649–15653 (2008)CrossRefGoogle Scholar
  10. 10.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Transactions on Knowledge and Data Engineering 25(4), 919–931 (2013)CrossRefGoogle Scholar
  11. 11.
    Sarma, A.D., Jain, A., Yu, C.: Dynamic relationship and event discovery. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 207–216 (2011)Google Scholar
  12. 12.
    Mendonca, D., Wallace, W.A.: A cognitive model of improvisation in emergency management. IEEE Transactions on Systems, Man, and Cybernetics- Part A: System and Humans 37(4), 547–561 (2007)CrossRefGoogle Scholar
  13. 13.
    Lindell, M.K., Prater, C.S., Perry, R.W.: Fundamentals of Emergency Management. Federal Emergency Management Agency Emergency Management Institute, Emmitsburg (2006)Google Scholar
  14. 14.
    Gao, C., Liu, J.: Clustering-based media analysis for understanding human emotional reactions in an extreme event. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol. 7661, pp. 125–135. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Figueriredo, F., Benevenuto, F., Almeida, J.: The tube over time: characterizing popularity growth of youtube videos. In: Proceedings of the 4th International Conference on Web Search and Data Mining (WSDM 2011), pp. 745–754 (2011)Google Scholar
  16. 16.
    Bassett, D.S., Alderson, D.L., Carlson, J.M.: Collective decision dynamics in the presence of external drivers. Physical Review E 85, 036105 (2012)Google Scholar
  17. 17.
    Myers, S., Chenguang, Z., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 33–41 (2012)Google Scholar
  18. 18.
    de Menezes, M.A., Barabasi, A.-L.: Separating internal and external dynamics of complex systems. Physical Review Letters 93(6), 068701 (2004)Google Scholar
  19. 19.
    Thelwall, M., Wilkinson, D., Uppal, S.: Data mining emotion in social network communication: Gender differences in MySpace. Journal of the American Society for Information Science and Technology 61(1), 190–199 (2010)CrossRefGoogle Scholar
  20. 20.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM 2010), pp. 122–129 (2010)Google Scholar
  21. 21.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)CrossRefGoogle Scholar
  22. 22.
    Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network over 32 Years. The New England Journal of Medicine 357(4), 370–379 (2007)CrossRefGoogle Scholar
  23. 23.
    Durham, D., Casman, E.: Incorporating Individual health-protective decisions into disease transmission models: a mathematical framework. Journal of The Royal Society Interface 9, 562–570 (2012)CrossRefGoogle Scholar
  24. 24.
    Moran, J., Cordaro, J.: Understanding the hit-rate dynamics of a large website with an agent-based model. In: Processing of 8th International Conference on Autonomous Agents and Multiagent System (AAMAS 2009), pp. 105–109 (2009)Google Scholar
  25. 25.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event eetection by social sensors. In: Proceedings of the 19th International World Wide Web Conference (WWW 2010), pp. 851–860 (2010)Google Scholar
  26. 26.
    Sano, Y., Yamada, K., Watanabe, H., Takayasu, H., Takayasu, M.: Empirical analysis of collective human behavior for extraordinary events in the blogosphere. Physical Review E 87(1), 012805 (2013)Google Scholar
  27. 27.
    Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2012), pp. 6–14 (2012)Google Scholar
  28. 28.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69(6), 066133 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ning Shi
    • 1
  • Chao Gao
    • 1
  • Zili Zhang
    • 1
    • 2
  • Lu Zhong
    • 1
  • Jiajin Huang
    • 3
  1. 1.College of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.School of Information TechnologyDeakin UniversityAustralia
  3. 3.International WIC InstituteBeijing University of TechnologyBeijingChina

Personalised recommendations