Advertisement

Small Is Powerful! Towards a Refinedly Enriched Ontology by Careful Pruning and Trimming

  • Shan Jiang
  • Jiazhen Nian
  • Shi Zhao
  • Yan Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)

Abstract

In this paper, we study how to better merge a WordNet-like ontology with an online encyclopedia. We first eliminate the noises with some heuristic rules, and then adopt a domain-dependent strategy to trim the encyclopedia structure. Finally, we integrate entities from the trimmed structure into the original ontology, and construct a refinedly-enriched ontology. The experimental results show that this ontology can achieve better performance than the original version as well as a coarsely-enriched version constructed without pruning and trimming.

Keywords

Selection Proportion Space Consumption Noise Elimination Online Encyclopedia Semantic Lexicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderka, M., Stein, B., Lipka, N.: Predicting quality flaws in user-generated content: The case of wikipedia. In: Proc. of SIGIR 2012, pp. 981–990 (2012)Google Scholar
  2. 2.
    Artola, X., Soroa, A.: Elhisa: An architecture for the integration of heterogeneous lexical information. Natural Language Engineering 14(2) (April 2008)Google Scholar
  3. 3.
    Bentivogli, L., Pianta, E.: Extending wordnet with syntagmatic information. In: Proc. of GWC 2004, pp. 47–53 (2004)Google Scholar
  4. 4.
    Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Finding authorities and hubs from link structures on the world wide web. In: Proc. of WWW 2001, pp. 415–429 (2001)Google Scholar
  5. 5.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)Google Scholar
  6. 6.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of COLING 1992, pp. 539–545 (1992)Google Scholar
  8. 8.
    Jiang, S., Bing, L., Sun, B., Zhang, Y., Lam, W.: Ontology enhancement and concept granularity learning: Keeping yourself current and adaptive. In: Proc. of KDD 2011, pp. 1244–1252 (2011)Google Scholar
  9. 9.
    Kamps, J., Koolen, M.: Is wikipedia link structure different? In: Proc. of WSDM 2009 (2009)Google Scholar
  10. 10.
    Kozareva, Z., Hovy, E.: A semi-supervised method to learn and construct taxonomies using the web. In: Proc. of EMNLP 2010, pp. 1110–1118 (2010)Google Scholar
  11. 11.
    Liu, Y., Yu, S., Yu, J.: Building a bilingual wordnet-like lexicon: the new approach and algorithms. In: Proc. of COLING 2002 (2002)Google Scholar
  12. 12.
    Mandhani, B., Soderland, S.: Exploiting hyponymy in extracting relations and enhancing ontologies. In: Proc. of WIIAT 2008, pp. 325–329 (2008)Google Scholar
  13. 13.
    McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic web with lemon. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    McGuinness, D., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: Proc. of KR 2000 (2000)Google Scholar
  15. 15.
    Melo, G.D., Weikum, G.: Towards a universal wordnet by learning from combined evidence. In: Proc. of CIKM 2009, pp. 513–522 (2009)Google Scholar
  16. 16.
    Morato, J.Á., Marzal, M., Lloréns, J., Moreiro, J.: Wordnet applications. In: Proc. of GWC 2004 (2004)Google Scholar
  17. 17.
    Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result clustering. In: Proc. of EMNLP 2010, pp. 116–126 (2010)Google Scholar
  18. 18.
    Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual semantic network. In: Proc. of ACL 2010, pp. 216–225 (2010)Google Scholar
  19. 19.
    Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F.: Extending and enriching wordnet with ontolearn. In: Proc. of GWC 2004, pp. 279–284 (2004)Google Scholar
  20. 20.
    Pociello, E., Agirre, E., Aldezabal, I.: Methodology and construction of the basque wordnet. Language Resources and Evaluation 45(2), 121–142 (2011)CrossRefGoogle Scholar
  21. 21.
    Ponzetto, S.P., Navigli, R.: Large-scale taxonomy mapping for restructuring and integrating wikipedia. In: Proc. of IJCAI 2009, pp. 2083–2088 (2009)Google Scholar
  22. 22.
    Ramírez, J., Asahara, M., Matsumoto, Y.: Japanese-spanish thesaurus construction using english as a pivot. In: Proc. of IJCNLP 2008, pp. 473–480 (2008)Google Scholar
  23. 23.
    Shi, L., Mihalcea, R.: Putting pieces together: Combining framenet, verbnet and wordnet for robust semantic parsing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 100–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Subramaniam, L.V., Nanavati, A.A., Mukherjea, S.: Enriching one taxonomy using another. IEEE TKDE 22(10) (October 2010)Google Scholar
  25. 25.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proc. of WWW 2007, pp. 697–706 (2007)Google Scholar
  26. 26.
    Veale, T., Hao, Y.: Enriching wordnet with folk knowledge and stereotypes. In: Proc. of GWC 2008 (2008)Google Scholar
  27. 27.
    Wang, P., Hu, J., Zeng, H., Chen, Z.: Using wikipedia knowledge to improve text classification. Knowledge and Information Systems 19(3), 265–281 (2009)CrossRefGoogle Scholar
  28. 28.
    Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In: Proc. of WWW 2008, pp. 635–644 (2008)Google Scholar
  29. 29.
    Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proc. of SIGIR 1999, pp. 42–49 (1999)Google Scholar
  30. 30.
    Yu, J., Yu, S., Liu, Y., Zhang, H.: Introduction to chineses concept dictionary. In: Proc. of ICCC 2001, pp. 361–366 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shan Jiang
    • 1
  • Jiazhen Nian
    • 1
  • Shi Zhao
    • 1
  • Yan Zhang
    • 1
  1. 1.Department of Machine IntelligencePeking University Key Laboratory on Machine Perception, Ministry of EducationBeijingP.R. China

Personalised recommendations