Research on Map Matching Based on Hidden Markov Model

  • Jinhui Nie
  • Hongqi Su
  • Xiaohua Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)


Map matching is the procedure for determining the sequence of road links a vehicle has traveled on using the GPS data collected by sensors. Low sampling frequency and high offset noises are the main problems that the map matching algorithm needs to solve. In this study, the authors proposed a map matching algorithm based on the Hidden Markov Model (HMM). Naively matching the GPS sampling points with noise to the nearest road will result in some unreasonable map matching results, while this algorithm takes into account the location information suggested by GPS point and the road link transition probability. Also no more traffic information is needed in the procedure, which has a high accuracy and generalization ability. The algorithm was test with the real-word GPS data on a complex road network. The performance of the algorithm was found to be sufficiently accurate and efficient for the actual projects.


Map matching Hidden Markov Model traveling track road network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miwa, T., Kiuchi, D., Yamamoto, T., et al.: Development of Map Matching Algorithm for Low Frequency Probe Data. Transportation Research Part C: Emerging Technologies 22, 132–145 (2012)CrossRefGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience (2012)Google Scholar
  3. 3.
    Sun, Y.R., Huang, B., Wang, L.N., et al.: Vector map matching navigation method with anti-scale transformation. Zhongguo Guanxing Jishu Xuebao 21(1) (2013)Google Scholar
  4. 4.
    Hunter, T., Abbeel, P., Bayen, A.M.: The path inference filter: Model-based low-latency map matching of probe vehicle data. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 591–607. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bierlaire, M., Chen, J., Newman, J.: A probabilistic map matching method for smartphone GPS data. Transportation Research Part C: Emerging Technologies 26, 78–98 (2013)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Liu, C., Liu, K., Xu, J., He, F., Ding, Z.: On Efficient Map-Matching According to Intersections You Pass By. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M., et al. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 42–56. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Ren, M., Karimi, H.A.: 9 Multisensor Map Matching for Pedestrian and Wheelchair Navigation. Advanced Location-Based Technologies and Services 209 (2013)Google Scholar
  8. 8.
    Zhu, L., Bao, Y., Wang, S.-G., Zhou, Q., Bao, X.: Map-Matching Compatible with Junction Adjusting in Vehicle Navigation System. In: Qian, Z., Cao, L., Su, W., Wang, T., Yang, H., et al. (eds.) Recent Advances in CSIE 2011. LNEE, vol. 129, pp. 451–458. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Levin, R., Kravi, E., Kanza, Y.: Concurrent and robust topological map matching. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 617–620. ACM (2012)Google Scholar
  10. 10.
    Wang, D., Geng, X., Zhu, S.: Research on a Map-matching Method for a GNSS-based ETC System. Journal of Highway and Transportation Research and Development (English Edition) 6(4), 96–102 (2012)CrossRefGoogle Scholar
  11. 11.
    Lou, Y., Zhang, C., Zheng, Y., et al.: Map-matching for Low-sampling-rate GPS Trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 352–361. ACM (2009)Google Scholar
  12. 12.
    Wang, M., Bao, X., Zhu, L., et al.: A Map-Matching Method Using Intersection-Based Parallelogram Criterion. Advanced Materials Research 403, 2746–2750 (2012)Google Scholar
  13. 13.
    Zheng, K., Zheng, Y., Xie, X., et al.: Reducing uncertainty of low-sampling-rate trajectories. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 1144–1155. IEEE (2012)Google Scholar
  14. 14.
    Yang, L., Wang, R., Yan, H.: Urban road network matching method based on stable stroke hierarchical structure (2013)Google Scholar
  15. 15.
    Chen, J., Bierlaire, M.: Probabilistic multimodal map-matching with rich smartphone data. Journal of Intelligent Transportation Systems (just-accepted, 2013)Google Scholar
  16. 16.
    Yu, X., Yang, Q., Rong, X.: An Efficient Stereo Matching Algorithm Based on Intensity Weighted Correlation. In: Zhong, Z. (ed.) Proceedings of the International Conference on Information Engineering and Applications (IEA 2012). LNEE, vol. 217, pp. 399–406. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Wei, H., Wang, Y., Forman, G., et al.: Fast Viterbi map matching with tunable weight functions. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 613–616. ACM (2012)Google Scholar
  18. 18.
    Zhao, Y., Qin, Q., Li, J., et al.: Highway map matching algorithm based on floating car data. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5982–5985. IEEE (2012)Google Scholar
  19. 19.
    Zhang, T., Yang, D., Yang, Y., et al.: Vehicle Behavior Pattern Recognition at Merging and Diverging Sections for Expressways in Map-matching. China Journal of Highway and Transport 6, 017 (2010)Google Scholar
  20. 20.
    Yang, S., Wu, C., Dong, G.: Improvement of the Map-Matching Algorithm Based on WSN Localization Algorithm and Bearing Information. Journal of Yunnan University of Nationalities (Natural Sciences Edition) 1, 14 (2011)Google Scholar
  21. 21.
    Lu, W., Zhang, Y., Chen, L., et al.: Map-matching algorithm research based on computational geometry. Machinery Design & Manufacture 1, 18 (2012)Google Scholar
  22. 22.
    Liu, Y., Yao, E., Li, X., et al.: Map-matching Accuracy of Probe Vehicle System. Journal of Highway and Transportation Research and Development, S1 (2011)Google Scholar
  23. 23.
    Li, R., Cao, W.: The Application of Improved Genetic Algorithm in Map Matching. Hydrographic Surveying and Charting 6, 021 (2011)Google Scholar
  24. 24.
    Yuan, Y.M., Guan, W., Qiu, W.: Map matching algorithm for inner suburban freeway based on handover location technique. Journal of Jilin University (Engineering and Technology Edition) 41(5), 1240–1245 (2011)Google Scholar
  25. 25.
    Wang, J., Yu, X.: A Map-matching Arithmetic of Approximate Reasoning. Computer Simulation 8, 074 (2010)Google Scholar
  26. 26.
    Zhu, J., Du, S., Ma, L., et al.: Merging Grid Maps Via Point Set Registration. International Journal of Robotics and Automation 28(2) (2013)Google Scholar
  27. 27.
    Ng, M.K.: Markov chains: models, algorithms and applications. Springer (2013)Google Scholar
  28. 28.
    Bonneville, R., Jin, V.X.: A hidden Markov model to identify combinatorial epigenetic regulation patterns for estrogen receptor α target genes. Bioinformatics 29(1), 22–28 (2013)CrossRefGoogle Scholar
  29. 29.
    Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden Markov models. Journal of Computer and System Sciences 78(5), 1460–1480 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jinhui Nie
    • 1
  • Hongqi Su
    • 1
  • Xiaohua Zhou
    • 2
  1. 1.School of Mechatronical EngineeringChina University of Mining and TechnologyBeijingChina
  2. 2.School of Computer Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations