A Comparative Study of Three Image Representations for Population Estimation Mining Using Remote Sensing Imagery

  • Kwankamon Dittakan
  • Frans Coenen
  • Rob Christley
  • Maya Wardeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)


Census information regarding populations is important with respect to many governmental activities such as commercial, health, communication, social and infrastructure planning and development. However, the traditional census collection methods (ground surveys) are resource intensive in terms of both cost and time. The resources required for census collection activities are particularly high in rural areas which feature poor communication and transport networks. In this paper the interpretation of high-resolution satellite imagery is proposed as a low cost (but less accurate) alternative to obtaining census data. The fundamental idea is to build a classifier that can label households according to “Family size” which can then be used to generate a census estimation. The challenge is how best to translate the raw satellite data into a form that captures key information in such a way that an appropriate classifier can still be built. Three different representations are considered: (i) Colour Histogram, (ii) Local Binary Pattern and (iii) Graph-based. The representations were evaluated by generating census information using test data collected from a rural area to the northwest of Addis Ababa in Ethiopia.


Satellite Image Analysis and Mining Data Mining Applications Population Estimation Mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsalman, A.S., Ali, A.E.: Population Estimation From High Resolution Satellite Imagery: A Case Study From Khartoum. Emirates Journal for Engineering Research 16(1), 63–69 (2011)Google Scholar
  2. 2.
    Cheng, L., Zhou, Y., Wang, L., Wang, S., Du., C.: An estimate of the city population in china using dmsp night-time satellite imagery. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, pp. 691–694 (2007)Google Scholar
  3. 3.
    Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1(1), 231–255 (1994)Google Scholar
  4. 4.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dittakan, K., Coenen, F., Christley, R.: Towards the collection of census data from satellite imagery using data mining: A study with respect to the ethiopian hinterland. In: Bramer, M., Petridis, M. (eds.) Proc. Research and Development in Intelligent Systems XXIX, pp. 405–418. Springer, London (2012)CrossRefGoogle Scholar
  6. 6.
    Friedman, M.: A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)CrossRefGoogle Scholar
  7. 7.
    Ganea, E., Brezovan, M.: Graph object oriented database for semantic image retrieval. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 563–566. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Han, J., Ma, K.: Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing 11(8), 944–952 (2002)CrossRefGoogle Scholar
  9. 9.
    Hung, C.C., Pham, M., Arasteh, S., Kuo, B.C., Coleman, T.: Image texture classification using texture spectrum and local binary pattern. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2006, July 31-August 4, pp. 2750–2753 (2006)Google Scholar
  10. 10.
    Javed, Y., Khan, M.M., Chanussot, J.: Population density estimation using textons. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp. 2206–2209 (2012)Google Scholar
  11. 11.
    Jeong, S., Won, C.S., Gray, R.M.: Image retrieval using color histograms generated by gauss mixture vector quantization. Computer Vision and Image Understanding 94(3), 44–66 (2004)CrossRefGoogle Scholar
  12. 12.
    Jouili, S., Tabbone, S.: Towards performance evaluation of graph-based representation. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 72–81. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Trans. Software Engineering 34(4), 485–496 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, G., Weng, Q.: Using Landsat ETM+ imagery to measure population density in Indianapolis, Indiana, USA. Photogrammetric Engineering and Remote Sensing 71(8), 63–69 (2005)Google Scholar
  15. 15.
    Liang, P., Li, S.F., Qin, J.W.: Mulit-resolution local binary patterns for image classification. In: 2010 20th International Conference on Wevelet Analysis and Pattern Recognition, pp. 164–169 (2010)Google Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Ozdemir, B., Aksoy, S.: Image classification using subgraph histogram representation. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1112–1115 (2010)Google Scholar
  18. 18.
    Pozzi, F., Small, C., Yetman, G.: Modeling the distribution of hunman population with night-time satellite imagery and gridded population of the world. In: Conference on Pecora 15/Land Satellite Information IV/ISPRS Comission I/FIEOS (2002)Google Scholar
  19. 19.
    Reis, I.A., Silva, V.L., Reis, E.A.: Adjusting population estimates using satellite imagery and regression models. In: Anais XV Simpsio Brasileiro de Sensoriamento Remoto, SBSR, pp. 830–837 (April 5, 2011)Google Scholar
  20. 20.
    Sanfeliu, A., Alquézarb, R., Andrade, J., Climent, J., Serratosa, F., Vergésa, J.: Graph-based representations and techniques for image processing and image analysis. Pattern Recognition 35(3), 639–650 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Song, C., Li, P., Yang, F.: Multivariate texture measured by local binary pattern for multispectral image classification. In: Proc. IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2006, pp. 2145–2148 (2006)Google Scholar
  22. 22.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  23. 23.
    Yan, X., Han, J.: gspan: graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2003, pp. 721–724 (2002)Google Scholar
  24. 24.
    Zhang, Y., He, R., Jian, M.: Comparison of two methods for texture image classification. In: Second International Workshop on Computer Science and Engineering, WCSE 2009, pp. 65–68 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kwankamon Dittakan
    • 1
  • Frans Coenen
    • 1
  • Rob Christley
    • 2
  • Maya Wardeh
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom
  2. 2.Institute of Infection and Global HealthUniversity of LiverpoolNestonUnited Kingdom

Personalised recommendations