Advertisement

Mining E-Commerce Feedback Comments for Dimension Rating Profiles

  • Lishan Cui
  • Xiuzhen Zhang
  • Yan Wang
  • Lifang Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8346)

Abstract

Opinion mining on regular documents like movie reviews and product reviews has been intensively studied. In this paper we focus on opinion mining on short e-commerce feedback comments. We aim to compute a comprehensive rating profile for sellers comprising of dimension ratings and weights. We propose an algorithm to mine feedback comments for dimension ratings, combining opinion mining and dependency relation analysis, a recent development in natural language processing. We formulate the problem of computing dimension weights from ratings as a factor analytic problem and propose an effective solution based on matrix factorisation. Extensive experiments on eBay and Amazon data demonstrate that our proposed algorithms can achieve accuracies of 93.1% and 89.64% respectively for identifying dimensions and ratings in feedback comments, and the weights computed can accurately reflect the amount of feedback for dimensions.

Keywords

opinion mining typed dependency matrix factorisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB (1994)Google Scholar
  2. 2.
    Baccianella, S., et al.: SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proc. LREC (2010)Google Scholar
  3. 3.
    Chandrasekaran, V., et al.: Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization 21(2), 572–596 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    De Marneffe, M., et al.: Generating typed dependency parses from phrase structure parses. In: Proc. LREC, pp. 449–454 (2006)Google Scholar
  5. 5.
    Deerwester, S., et al.: Indexing by latent semantic analysis. Journal of the American Society for information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  6. 6.
    Fang, Y., et al.: Mining contrastive opinions on political texts using cross-perspective topic model. In: Proc. WSDM (2012)Google Scholar
  7. 7.
    Gamon, M.: Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: 20th Int. Conf. on Computational Linguistics (2004)Google Scholar
  8. 8.
    Go, A., et al.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford (2009)Google Scholar
  9. 9.
    Goryachev, S., et al.: Implementation and evaluation of four different methods of negation detection. Technical report, DSG (2006)Google Scholar
  10. 10.
    Hijikata, Y., et al.: Social summarization of text feedback for online auctions and interactive presentation of the summary. Knowledge-Based Systems 20(6) (2007)Google Scholar
  11. 11.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, TOIS (2004)Google Scholar
  12. 12.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proc. KDD (2004)Google Scholar
  13. 13.
    Karplus, K.: Evaluating regularizers for estimating distributions of amino acids. In: Proc. Third Int. Conf. on ISMB, vol. 3 (1995)Google Scholar
  14. 14.
    Koren, Y., et al.: Matrix factorization techniques for recommender systems. Computer (2009)Google Scholar
  15. 15.
    Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers (2012)Google Scholar
  16. 16.
    Lu, Y., et al.: Rated aspect summarization of short comments. In: Proc. WWW (2009)Google Scholar
  17. 17.
    O’Donovan, J., et al.: Extracting and visualizing trust relationships from online auction feedback comments. In: Proc. IJCAI, pp. 2826–2831 (2007)Google Scholar
  18. 18.
    Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proc. ACL (2004)Google Scholar
  19. 19.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  20. 20.
    Porter, M.F.: An algorithm for suffix stripping. Program: Electronic Library and Information Systems 14(3) (1980)Google Scholar
  21. 21.
    Resnick, P., et al.: Reputation Systems: Facilitating Trust in Internet Interactions. Communications of the ACM 43, 45–48 (2000)CrossRefGoogle Scholar
  22. 22.
    Thelwall, M., et al.: Sentiment strength detection in short informal text. Journal of the American Society for information Science 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  23. 23.
    Turney, P.D.: Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In: Proc. ACL, pp. 417–424 (2002)Google Scholar
  24. 24.
    Wang, H., et al.: Latent aspect rating analysis without aspect keyword supervision. In: Proc. 17th ACM SIGKDD, pp. 618–626 (2011)Google Scholar
  25. 25.
    Wu, Z., et al.: Hysad: A semi-supervised hybrid shilling attack detector for trustworthy product recommendation. In: Proc. 18th ACM SIGKDD, pp. 985–993 (2012)Google Scholar
  26. 26.
    Zhang, X., Zhou, Y., Bailey, J., Ramamohanarao, K.: Sentiment analysis by augmenting expectation maximisation with lexical knowledge. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE 2012. LNCS, vol. 7651, pp. 30–43. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Zhuang, L., et al.: Movie review mining and summarization. In: Proc. CIKM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lishan Cui
    • 1
  • Xiuzhen Zhang
    • 1
  • Yan Wang
    • 2
  • Lifang Wu
    • 3
  1. 1.School of Computer Science & ITRMIT UniversityMelbourneAustralia
  2. 2.Department of ComputingMacquarie UniversitySydneyAustralia
  3. 3.Beijing University of TechnologyChina

Personalised recommendations