Skip to main content

Application of Computational Mass Transfer (IV): Fixed-Bed Catalytic Reaction

  • Chapter
  • First Online:
Introduction to Computational Mass Transfer

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1872 Accesses

Abstract

In this chapter, an exothermic catalytic reaction process is simulated by using computational mass transfer (CMT) models as presented in Chap. 3. The difference between the simulation in this chapter from those in Chaps. 4, 5, and 6 is that chemical reaction is involved. The source term S n in the species conservation equation represents not only the mass transferred from one phase to the other, but also the mass created or depleted by a chemical reaction. Thus, the application of the CMT model is extended to simulating the chemical reactor. The simulation is carried out on a wall-cooled catalytic reactor for the synthesis of vinyl acetate from acetic acid and acetylene by using both \( \overline{{c^{\prime 2} }} - \varepsilon_{{{\text{c}}^{\prime } }} \) model and Reynolds mass flux model. The simulated axial concentration and temperature distributions are in agreement with the experimental measurement. As the distribution of \( \mu_{\text{t}} \) shows dissimilarity with D t and \( \alpha_{\text{t}} \), the Sc t or Pr t are thus varying throughout the reactor. The anisotropic axial and radial turbulent mass transfer diffusivities are predicted where the wavy shape of axial diffusivity D t,x along the radial direction indicates the important influence of catalysis porosity distribution on the performance of a reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Surface area, m

C :

Mass concentration, kg m−3

\( \overline{{c^{2} }} \) :

Concentration variance, kg2 m−6

\( C_{\mu } ,\;c_{1} ,\;c_{2} \) :

Model parameters in \( k - \varepsilon \) model equations

C c0, C c1, C c2, C c3 :

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{c} \) model equations

C D0, C D1, C D2, C D3, C D4 :

Model parameters in \( \overline{{t^{2} }} - \varepsilon_{\text{t}} \) model equations

C p :

Specific heat, J kg−1 K−1

\( C_{\text{si}}^{\text{s}} \) :

Mass concentration of reactive species at the surface of catalyst

d e :

Effective diameter of catalyst particle, m

D e :

Effective turbulent mass diffusivity, m2 s−1

D s :

Intra-diffusivity of the catalyst, m2 s−1

D t :

Turbulent mass diffusivity, m2 s−1

G :

Gas-phase flow rate per unit cross-sectional area, kg m−2 s−1

h :

Film coefficient of mass transfer, m s−1

H :

Axial distance measured from column bottom (H = 0 at column bottom), m

\( \Delta H_{\text{r}} \) :

Heat of reaction, kJ mol−1

k :

Turbulent kinetic energy, m2 s−2

M :

Molar mass, kg mol−1

Pe t :

Turbulent Peclet number

r :

Position in radial direction, m

R :

Radius of the column

m :

Molar reaction rate mol/kg catalyst

s :

Apparent reaction rate

R 0 :

The resistant coefficient of porous media

R s :

Apparent reaction rate, kmol kg−1 (cat) s−1

Sc :

Turbulent Schmidt number

t 0 :

Fluid inlet temperature, °C

\( \overline{{t^{2} }} \) :

Temperature variance, K2

T :

Temperature, K

U :

Fluid superficial velocity, m s−1

x :

Axial position, m

z :

Dimensionless distance, z = (Rr)/d e

\( \alpha ,\;\alpha_{\text{t}} \) :

Molecular and turbulent thermal diffusivities, respectively, m2 s−1

\( \varepsilon \) :

Turbulent dissipation rate, m2 s−3

\( \varepsilon_{\text{c}} \) :

Turbulent dissipation rate of concentration fluctuation, kg2 m−6 s−1

ε t :

Turbulent dissipation rate of temperature fluctuation, K2 s−1

\( \varPhi \) :

Variable

\( \gamma \) :

Porosity distribution of the random packing bed

\( \gamma_{\infty } \) :

Porosity in an unbounded packing

\( \lambda \) :

Thermal conductivity, KJ m−1 K−1 s−1

\( \mu_{\text{t}} \) :

Turbulent viscosity, kg m−1 s−1

\( \rho \) :

Density, kg m−3

\( \rho_{\text{b}} \) :

Bulk density of catalyst, kg/m3

\( \nu_{\text{t}} \) :

Turbulent kinetic viscosity, m2 s−1

\( \sigma_{c} ,\sigma_{{\varepsilon_{\text{c}} }} \) :

Model parameters in \( \overline{{c^{2} }} - \varepsilon_{\text{c}} \) model equations

\( \sigma_{\text{t}} \) :

Model parameter in \( \overline{{t^{2} }} - \varepsilon_{\text{t}} \) model equations

\( \sigma_{\text{k}} ,\;\sigma_{\varepsilon } \) :

Model parameters in \( k - \varepsilon \) model equations

c:

Coolant

G:

Gas phase

i:

Interface

s:

Catalyst; reactive species

w:

Reactor wall

1:

Inner

2:

Outer

s:

Surface

References

  1. Froment GF, Bischoff KB (1990) Chemical reactor analysis and design. Wiley, New York

    Google Scholar 

  2. Liu GB, Yu KT, Yuan XG, Liu CJ (2008) A computational transport model for wall-cooled catalytic reactor. Ind Eng Chem Res 47:2656–2665

    Article  CAS  Google Scholar 

  3. Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic Press, London

    Google Scholar 

  4. Elghobashi SE, Launder BE (1983) Turbulent time scales and the dissipation rate of temperature variance in the thermal mixing layer. Phys Fluids 26(9):2415–2419

    Article  Google Scholar 

  5. de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49(8):2022–2029

    Article  Google Scholar 

  6. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  7. Valstar JM, van den Berg PJ, Oyserman J (1975) Comparison between twodimensional fixed bed reactor calculations and measurements. Chem Eng Sci 30(7):723–728

    Article  CAS  Google Scholar 

  8. Yaws CL (2003) Yaws’ handbook of thermodynamic and physical properties of chemical compounds. Knovel, New York

    Google Scholar 

  9. Li WB (2012) Theory and application of computational mass transfer. PhD Dissertation, Tianjin University, Tianjin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Tsong Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, KT., Yuan, X. (2014). Application of Computational Mass Transfer (IV): Fixed-Bed Catalytic Reaction. In: Introduction to Computational Mass Transfer. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53911-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53911-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53910-7

  • Online ISBN: 978-3-642-53911-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics