Skip to main content

Multisensorische Informationsverarbeitung

  • Chapter
  • First Online:
Allgemeine Psychologie

Zusammenfassung

Das Kapitel gibt einen ersten Überblick über den Kenntnisstand zur gemeinsamen Verarbeitung der Information aus verschiedenen Sinnen beim Menschen. Behandelt werden Prozesse der multisensorischen Integration redundanter Information und der multisensorischen Kombination, das Problem der Zuordnung zusammengehöriger Information aus verschiedenen Sinnen, Mechanismen des Abgleichs zwischen den Sinnen, die Rolle der Aufmerksamkeit sowie die neurophysiologischen Grundlagen multisensorischer Verarbeitung. Anhand von Beispielen aus Ergonomie und Klinik wird die Anwendbarkeit der Erkenntnisse verdeutlicht.

Schlüsselwörter: Multisensorisch; Multimodal; Intersensorisch; Redundante Information; Signalintegration; Adaptation; Rekalibrierung; Crossmodale Aufmerksamkeit; Multisensorische Areale

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the ’light-from-above’ prior. Nature Neuroscience, 7(10), 1057–1058.

    Article  PubMed  Google Scholar 

  • Alais, & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14(3), 257–262.

    Article  PubMed  Google Scholar 

  • Allman, B. L., Keniston, L. P., & Meredith, M. A. (2009). Not just for bimodal neurons anymore: The contribution of unimodal neurons to cortical multisensory processing. Brain Topography, 21, 157–167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alsius, A., Navarra, J., & Soto-Franco, S. (2007). Attention to touch weakens audiovisual speech integration. Experimental Brain Research, 183, 399–404.

    Article  PubMed  Google Scholar 

  • Amedi, A., Malach, R., Hendler, T., Peled, S., & Zohary, E. (2001). Visuo-haptic object-related activation in the ventral visual pathway. Nature Neuroscience, 4, 324–330.

    Article  PubMed  Google Scholar 

  • Amedi, A., Kriegstein, K. von, Atteveldt, N. M. van, Beauchamp, M. S., & Naumer, M. J. (2005). Functional imaging of crossmodal identification and object recognition. Experimental Brain Research, 166, 559–571.

    Article  PubMed  Google Scholar 

  • Atkins, J. E., Jacobs, R. A., & Knill, D. C. (2003). Experience-dependent visual cue recalibration based on discrepancies between visual and haptic percepts. Vision Research, 43, 2603–2613.

    Article  PubMed  Google Scholar 

  • Atteveldt, N. van, Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43, 271–282.

    Article  PubMed  Google Scholar 

  • Avillac, M., Hamed, B. S., & Duhamel, J. R. (2007). Multisensory integration in the ventral intraparietal area of the macaque monkey. Journal of Neuroscience, 27(8), 1922–1932.

    Article  PubMed  Google Scholar 

  • Barraclough, N. E., Xiao, D., Baker, C. I., Oram, M. W., & Perrett, D. I. (2005). Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. Journal of Cognitive Neuroscience, 17(3), 377–391.

    Article  PubMed  Google Scholar 

  • Barrett, A. M., Goedert, K. M., & Basso, J. C. (2012). Prism adaptation for spatial neglect after stroke: Translational practice gaps. Nature Reviews Neurology, 8(10), 567–577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedford, F. L. (1999). Keeping perception accurate. Trends in Cognitive Sciences, 3, 4–12.

    Article  PubMed  Google Scholar 

  • Beers, R. J. van, Sittig, A. C., & Gon, J. J. D. van der (1999). Integration of proprioceptive and visual position information: An experimentally supported model. Journal of Neurophysiology, 81(3), 1355–1364.

    PubMed  Google Scholar 

  • Behrmann, M., Watt, S., Black, S. E., & Barton, J. J. S. (1997). Impaired visual search in patients with unilateral neglect: An oculographic analysis. Neuropsychologia, 35, 1445–1458.

    Article  PubMed  Google Scholar 

  • Bell, A. H., Meredith, M. A., Opstal, A. J. van, & Munoz, D. P. (2005). Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. Journal of Neurophysiology, 93(6), 3659–3673.

    Article  PubMed  Google Scholar 

  • Bernstein, I. H., & Edelstein, B. A. (1971). Effects of some variations in auditory input upon visual choice reaction time. Journal of Experimental Psychology, 87, 242–247.

    Google Scholar 

  • Bertelson, P., & Aschersleben, G. (1998). Automatic visual bias of perceived auditory location. Psychonomic Bulletin & Review, 5(3), 482–489.

    Article  Google Scholar 

  • Bertelson, P., & Radeau, M. (1981). Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception & Psychophysics, 29, 578–584.

    Article  Google Scholar 

  • Bertelson, P., Vroomen, J., Gelder, B. de, & Driver, J. (2000). The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception & Psychophysics, 62, 321–332.

    Article  Google Scholar 

  • Bertelson, P., Frissen, I., Vroomen, J., & Gelder, B. de (2006). The aftereffects of ventriloquism: Patterns of spatial generalization. Perception & Psychophysics, 68, 428–436.

    Article  Google Scholar 

  • Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14, 129–133.

    Article  PubMed  Google Scholar 

  • Blanke, O. (2009). Multisensory brain mechanisms of bodily self-consciousness. Nature Reviews Neuroscience, 13, 556–571.

    Google Scholar 

  • Bremmer, F., Klam, F., Duhamel, J. R., Hamed, B. S., & Graf, W. (2002). Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16, 1569–1586.

    Article  PubMed  Google Scholar 

  • Bresciani, J. P., Dammeier, F., & Ernst, M. O. (2008). Tri-modal integration of visual, tactile and auditory signals for the perception of sequences of events. Brain Research Bulletin, 75(6), 753–760.

    Article  PubMed  Google Scholar 

  • Bresciani, J. P., Ernst, M. O., Drewing, K., Bouyer, G., Maury, V., & Kheddar, A. (2005). Feeling what you hear: Auditory signals can modulate tactile taps perception. Experimental Brain Research, 162, 172–180.

    Article  PubMed  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 6797–6806.

    Article  PubMed  Google Scholar 

  • Bruns, P., Liebnau, R., & Röder, B. (2011). Cross-modal training induces changes in spatial representations early in the auditory processing pathway. Psychological Science, 22, 1120–1126.

    Article  PubMed  Google Scholar 

  • Budinger, E., Heil, P., Hess, A., & Scheich, H. (2006). Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience, 143, 1065–1083.

    Article  PubMed  Google Scholar 

  • Calvert, G. A., & Thesen, T. (2004). Multisensory integration: Methodological approaches and emerging principles in the human brain. Journal of Physiology-Paris, 98(1–3), 191–205.

    Article  Google Scholar 

  • Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649–657.

    Article  PubMed  Google Scholar 

  • Cappe, C., Morel, A., Barone, P., & Rouiller, E. M. (2009). The thalamocortical projection systems in primate: An anatomical support for multisensory and sensorimotor interplay. Cerebral Cortex, 19, 2025–2037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cellini, C., Kaim, L., & Drewing, K. (2013). Visual and Haptic integration in the estimation of softness of deformable objects. i-Perception, 4, 516–531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L. H., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception & Psychophysics, 75(5), 790–811.

    Article  Google Scholar 

  • Clower, D. M., & Boussaoud, D. (2000). Selective use of perceptual recalibration versus visuomotor skill acquisition. Journal of Neurophysiology, 84(5), 2703–2708.

    PubMed  Google Scholar 

  • Cohen, Y. E., & Andersen, R. A. (2000). Reaches to sounds encoded in an eye-centered reference frame. Neuron, 27(3), 647–652.

    Article  PubMed  Google Scholar 

  • Colin, C., Radeau, M., Deltenre, P., & Morais, J. (2001). Rules of intersensory integration in spatial scene analysis and speechreading. Psychologica Belgica, 41, 131–144.

    Google Scholar 

  • Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attentional deficits in spatial neglect. Nature Neuroscience, 8, 1424–1425.

    Article  Google Scholar 

  • Cressman, E. K., & Henriques, D. Y. (2010). Reach adaptation and proprioceptive recalibration following exposure to misaligned sensory input. Journal of Neurophysiology, 103, 1888–1895.

    Article  PubMed  Google Scholar 

  • Diederich, A., & Colonius, H. (2004). Bimodal and trimodal multisensory enhancement: Effects of stimulus onset and intensity on reaction time. Perception & Psychophysics, 66, 1388–1404.

    Article  Google Scholar 

  • Diller, L., & Weinberg, J. (1977). Hemi-inattention in rehabilitation: The evolution of a rational remediation program. Advances in Neurology, 18, 63–82.

    PubMed  Google Scholar 

  • DiLuca, M., Machulla, T., & Ernst, M. O. (2009). Recalibration of multisensory simultaneity: Cross-modal transfer coincides with a change in perceptual latency. Journal of Vision, 9, 1–16.

    Google Scholar 

  • Dogangil, G., Davies, B. L., & Rodriguez y Baena, F. (2010). A review of medical robotics for minimally invasive soft tissue surgery. Journal of Engineering in Medicine, 224(5), 653–679.

    Article  PubMed  Google Scholar 

  • Drewing, K., & Kaim, L. (2009). Haptic shape perception from force and position signals varies with exploratory movement direction and the exploring finger. Attention, Perception & Psychophysics, 71(5), 1174–1184.

    Article  Google Scholar 

  • Driver, J., & Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron, 57, 11–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Driver, J., & Spence, C. (2004). Crossmodal spatial attention: Evidence from human performance. In C. Spence, & J. Driver (Hrsg.), Crossmodal Space and Crossmodal Attention (S. 179–220). Oxford: Oxford University Press.

    Google Scholar 

  • Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.

    Article  PubMed  Google Scholar 

  • Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162–169.

    Article  PubMed  Google Scholar 

  • Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappingsbetween visual and auditory features. Journal of Vision, 10(1), 1–12.

    PubMed  Google Scholar 

  • Fairhall, S. L., & Macaluso, E. (2009). Spatial attention can modulate audiovisual integration at multiple cortical and subcortical sites. European Journal of Neuroscience, 29, 1247–1257.

    Article  PubMed  Google Scholar 

  • Falchier, A., Schroeder, C., Hackett, T., Lakatos, P., Nascimento-Silva, S., Ulbert, I., Karmos, G., & Smiley, J. (2009). Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cerebral Cortex, 20(7), 1529–1538.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferre, M., Buss, M., Aracil, R., Melchiorri, C., & Balaguer, C. (Hrsg.). (2007). Advances in Telerobotics. Berlin: Springer.

    Google Scholar 

  • Frassinetti, F., Angeli, V., Meneghello, F., Avanzi, S., & Ladavas, E. (2002). Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain, 125, 608–623.

    Article  PubMed  Google Scholar 

  • Freides, D. (1974). Human information processing and sensory modality :Cross-modal functions, information complexity, memory, and deficit. Psychological Bulletin, 81(5), 284–310.

    Article  PubMed  Google Scholar 

  • Fruhmann-Berger, M., & Karnath, H. O. (2005). Spontaneous eye and head position in patients with spatial neglect. Journal of Neurology, 252, 1194–1200.

    Article  PubMed  Google Scholar 

  • Fu, K. M. G., Johnston, T. A., Shah, A. S., Arnold, L., Smiley, J., Hackett, T. A., Garraghty, P. E., & Schroeder, C. E. (2003). Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience, 23, 7510–7515.

    PubMed  Google Scholar 

  • Fujisaki, W., Shimojo, S., Kashino, M., & Nishida, S. (2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7, 773–778.

    Article  PubMed  Google Scholar 

  • Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics, 68, 1191–1203.

    Article  Google Scholar 

  • Geisler, W. S. (2003). Ideal Observer Analysis. In L. M. Chalupa, & J. S. Werner (Hrsg.), The Visual Neurosciences (S. 825–837). Cambridge: MIT Press.

    Google Scholar 

  • Gepshtein, S., Burge, J., Ernst, M. O., & Banks, M. S. (2005). The combination of vision and touch depends on spatial proximity. Journal of Vision, 5, 1013–1023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghazanfar, A. A., & Schroeder, C. E. (2006). Is the neocortex essentially multisensory? Trends in Cognitive Science, 10, 278–285.

    Article  Google Scholar 

  • Ghazanfar, A. A., Maier, J. X., Hoffman, K. L., & Logothetis, N. K. (2005). Multisensory integration of dynamic faces and voices in rhesusmonkey auditory cortex. Journal of Neuroscience, 25(20), 5004–5012.

    Article  PubMed  Google Scholar 

  • Gray, R., Spence, C., Ho, C., & Tan, H. Z. (2013). Efficient multimodal cuing of spatial attention. Proceedings of IEEE, 101(9), 2113–2122.

    Article  Google Scholar 

  • Hagen, M. C., Franzén, O., McGlone, F., Essick, G., Dancer, C., & Pardo, J. V. (2002). Tactile motion activates the human middle temporal/V5 (MT/VT) complex. European Journal of Neuroscience, 16(5), 957–964.

    Article  PubMed  Google Scholar 

  • Harris, C. S. (1965). Perceptual adaptation to inverted, reversed, and displaced vision. Psychological Review, 72(6), 419–444.

    Article  PubMed  Google Scholar 

  • Hartline, P. H., Vimal, R. L., King, A. J., Kurylo, D. D., & Northmore, D. P. (1995). Effects of eye position on auditory localization and neural representation of space in superior colliculus of cats. Experimental Brain Research, 104, 402–408.

    Article  PubMed  Google Scholar 

  • Hay, J. C., & Pick, H. L. (1966). Visual and proprioceptive adaptation to optical displacement of the visual stimulus. Journal of Experimental Psychology, 71, 150–158.

    Article  PubMed  Google Scholar 

  • Helbig, H. B., & Ernst, M. O. (2008). Visual-haptic cue weighting is independent of modality-specific attention. Journal of Vision, 8(1), 1–16.

    Article  PubMed  Google Scholar 

  • Held, R. (1965). Plasticity in sensory-motor systems. Scientific American, 213(5), 84–94.

    Article  PubMed  Google Scholar 

  • Helmholtz, H. v (1909). Handbuch der physiologischen Optik (3. Aufl.). Leipzig: Leonard Voss.

    Google Scholar 

  • Henriques, D. Y., & Cressman, E. K. (2012). Visuomotor adaptation and proprioceptive recalibration. Journal of Motor Behavior, 44(6), 435–444.

    Article  PubMed  Google Scholar 

  • Hikosaka, K. (1993). The polysensory region in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. Biomedical Research, 14, 41–45.

    Google Scholar 

  • Ho, & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology: Applied, 11(3), 157–174.

    PubMed  Google Scholar 

  • Ho, & Spence, C. (2008). The multisensory driver: Implications for ergonomic car interface design. Hampshire: Ashgate Publishing.

    Google Scholar 

  • Ho, C., Tan, H. Z., & Spence, C. (2005). Using spatial vibrotactile cues to direct visual attention in driving scenes. Transportation Research Part F: Traffic Psychology and Behavior, 8(6), 397–412.

    Article  Google Scholar 

  • Ho, C., Tan, H. Z., & Spence, C. (2006). The differential effect of vibrotactile and auditory cues on visual spatial attention. Ergonomics, 49(7), 724–738.

    Article  PubMed  Google Scholar 

  • Ho, C., Reed, N., & Spence, C. (2007). Multisensory in-car warning signals for collision avoidance. Human Factors, 49(6), 1107–1114.

    Article  PubMed  Google Scholar 

  • Huang, R. S., Chen, C. F., Tran, A. T., Holstein, K. L., & Sereno, M. I. (2012). Mapping multisensory parietal face and body areas in humans. Proceedings of the National Academy of Sciences, 109(44), 18114–18119.

    Article  Google Scholar 

  • Husain, M., Mannan, S., Hodgson, T., Wojciulik, E., Driver, J., & Kennard, C. (2001). Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain, 124, 941–952.

    Article  PubMed  Google Scholar 

  • Kadunce, D. C., Vaughan, J. W., Wallace, M. T., & Stein, B. E. (2001). The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Experimental Brain Research, 139, 303–310.

    Article  PubMed  Google Scholar 

  • Kaplan, R. F., Verfaellie, M., Meadows, M. E., Caplan, L. R., Pessin, M. S., & DeWitt, L. D. (1991). Changing attentional demands in left hemispatial neglect. Archives of Neurology, 48, 1263–1266.

    Article  PubMed  Google Scholar 

  • Karnath, H. O. (2006). Neglect. In H. O. Karnath, & P. Thier (Hrsg.), Neuropsychologie (S. 213–222). Berlin: Springer.

    Chapter  Google Scholar 

  • Kayser, C., Petkov, C. I., Augath, M., & Logothetis, N. K. (2005). Integration of touch and sound in auditory cortex. Neuron, 48, 373–384.

    Article  PubMed  Google Scholar 

  • Kerkhoff, G. (1998). Cognitive neurovisual rehabilitation: A cross-over study in patients with neglect and hemianopia. European Journal of Neuroscience, 10, 375.

    Google Scholar 

  • Kerkhoff, G., & Schenk, T. (2012). Rehabilitation of neglect: An update. Neuropsychologia, 50(6), 1072–1079.

    Article  PubMed  Google Scholar 

  • Klemen, J., & Chambers, C. D. (2012). Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neuroscience and Biobehavioral Reviews, 36, 111–133.

    Article  PubMed  Google Scholar 

  • Koelewijn, T., Bronkhorst, A., & Theeuwes, J. (2010). Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychologica, 134(3), 372–384.

    Article  PubMed  Google Scholar 

  • Köhler, W. (1929). Gestalt psychology. New York: Liveright.

    Google Scholar 

  • Ladavas, E., Bonifazi, S., Catena, L., & Serino, A. (2011). Neglect rehabilitation by prism adaptation: Different procedures have different impacts. Neuropsychologia, 49, 1136–1145.

    Article  PubMed  Google Scholar 

  • Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35(3), 389–412.

    Article  PubMed  Google Scholar 

  • Lee, J. D., McGehee, D. V., Brown, T. L., & Marshall, D. (2006). Effects of adaptive cruise control and alert modality on driver performance. Transportation Research Record, 1980, 49–56.

    Article  Google Scholar 

  • Lieberman, J., & Breazeal, C. (2007). TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning. Robotics, IEEE Transactions on, 23(5), 919–926.

    Article  Google Scholar 

  • Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imagingm, 22(10), 1517–1531.

    Article  Google Scholar 

  • Lubbe, R. H. J. van der, & Postma, A. (2005). Interruption from irrelevant auditory and visual onsets even when attention is in a focused state. Experimental Brain Research, 164(4), 464–471.

    Article  PubMed  Google Scholar 

  • Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289, 1206–1208.

    Article  PubMed  Google Scholar 

  • Marks, L. E., Ben-Artzi, E., & Lakatos, S. (2003). Cross-modal interactions in auditory and visual discrimination. International Journal of Psychophysiology, 50, 125–145.

    Article  PubMed  Google Scholar 

  • Matusz, P. J., & Eimer, M. (2011). Multisensory enhancement of attentional capture in visual search. Psychonomic Bulletin & Review, 18(5), 904–909.

    Article  Google Scholar 

  • Mayer, H., Nagy, I., Knoll, A., Braun, E. A., Bauernschmitt, R., & Lange, R. (2007). Haptic feedback in a telepresence system for endoscopic heart surgery. Presence: Teleoperators and Virtual Environments, 16(5), 459–470.

    Article  Google Scholar 

  • McDonald, J. J., Teder-Salejarvi, W. A., Di Russo, F., & Hillyard, S. A. (2003). Neural substrates of perceptual enhancement by cross-modal spatial attention. Journal of Cognitive Neuroscience, 15, 10–19.

    Article  PubMed  Google Scholar 

  • McDonald, J. J., Teder-Salejarvi, W. A., & Hillyard, S. A. (2000). Involuntary orienting of sound improves visual perception. Nature, 407, 906–908.

    Article  PubMed  Google Scholar 

  • McGurk, H., & MacDonald, J. (1976). Hearing Lips and seeing voices. Nature, 264, 746–748.

    Article  PubMed  Google Scholar 

  • Meredith, M. A., & Stein, B. E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology, 56, 640–662.

    PubMed  Google Scholar 

  • Meredith, M. A., & Stein, B. E. (1996). Spatial determinants of multisensory integration in cat superior colliculus neurons. Journal of Neurophysiology, 75(5), 1843–1857.

    PubMed  Google Scholar 

  • Middelweerd, M. J., & Plomp, R. (1987). The effect of speechreading on the speech-reception threshold of sentences in noise. Journal of the Acoustical Society of America, 82, 2145–2147.

    Article  PubMed  Google Scholar 

  • Miller, J. O. (1991). Channel interaction and the redundant targets effect in bimodal divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17, 160–169.

    PubMed  Google Scholar 

  • Miller, L. M., & D’Esposito, M. (2005). Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. Journal of Neuroscience, 25, 5884–5893.

    Article  PubMed  Google Scholar 

  • Mohebbi, R., Gray, R., & Tan, H. Z. (2009). Driver reaction time to tactile and auditory read-end collision warnings while talking on a cell phone. Human Factors: Journal of the Human Factors and Ergonomics Society, 51, 102–110.

    Article  Google Scholar 

  • Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory-visual interactions during early sensory processing in humans: A high-density electrical mapping study. Cognitive Brain Research, 14, 115–128.

    Article  PubMed  Google Scholar 

  • Morrell, F. (1972). Visual system’s view of acoustic space. Nature, 238, 44–46.

    Article  PubMed  Google Scholar 

  • Mudd, S. A. (1963). Spatial stereotypes of four dimensions of pure tone. Journal of Experimental Psychology, 66, 347–352.

    Article  PubMed  Google Scholar 

  • Müsseler, J., & Sutter, C. (2009). Perceiving one’s own movements when using a tool. Consciousness and Cognition, 18, 359–365.

    Article  PubMed  Google Scholar 

  • Newell, F. N., Bülthoff, H. H., & Ernst, M. O. (2003). Cross-modal perception of actively explored objects. In H. S. Oakley, & S. O’Modhrain (Hrsg.), Proceedings EuroHaptics 2003 (S. 291–299). Dublin: Trinity College Dublin.

    Google Scholar 

  • Newport, R., & Schenk, T. (2012). Prisms and neglect: What have we learned? Neuropsychologia, 50(6), 1080–1091.

    Article  PubMed  Google Scholar 

  • Nitsch, V., & Färber, B. (2013). A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Transactions on Haptics, 6(4), 387–398.

    Article  PubMed  Google Scholar 

  • Noppeney, U. (2011). Characterization of multisensory integration with fMRI: Experimental design, statistical analysis, and interpretation. In M. M. Murray, & M. T. Wallace (Hrsg.), The neural bases of multisensory processes (S. 233–252). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Nys, G. M. S., Zandvoort, M. J. E. van, Kort, P. L. M. de, Jansen, B. P. W., Haan, E. H. F. de, & Kappelle, L. J. (2007). Cognitive disorders in acute stroke: Prevalence and clinical determinants. Cerebrovascular Diseases, 23, 408–416.

    Article  PubMed  Google Scholar 

  • Parise, & Spence, C. (2009). When birds of a feather flock together: Synesthetic correspondences modulate audiovisual integration in non-synesthetes. PLoS ONE, 4, e5664.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peck, C. K., Baro, J. A., & Warder, S. M. (1995). Effects of eye position on saccadic eye movements and on the neuronal responses to auditory and visual stimuli in cat superior colliculus. Experimental Brain Research, 103, 227–242.

    Article  PubMed  Google Scholar 

  • Pekkola, J., Ojanen, V., Autti, T., Jääskeläinen, I. P., Möttönen, R., Tarkiainen, A., & Sams, M. (2005). Primary auditory cortex activation by visual speech: An fMRI study at 3 T. Neuroreport, 16(2), 125–128.

    Article  PubMed  Google Scholar 

  • Perrault Jr., T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93(5), 2575–2586.

    Article  PubMed  Google Scholar 

  • Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H. C., Cohen, L., Guazelli, M., & Haxby, J. V. (2004). Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences, 101(15), 5658–5663.

    Article  Google Scholar 

  • Prewett, M. S., Johnson, R. C., Saboe, K. N., Elliott, L. R., & Coovert, M. D. (2010). Managing workload in human-robot interaction: A review of empirical studies. Computers in Human Behavior, 26(5), 840–856.

    Article  Google Scholar 

  • Radeau, M., & Bertelson, P. (1974). The after-effects of ventriloquism. Quarterly Journal of Experimental Psychology, 26, 63–71.

    Article  PubMed  Google Scholar 

  • Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia – A window into perception, thought and language. Journal of Consciousness Studies, 8, 3–34.

    Google Scholar 

  • Redding, G. M., & Wallace, B. (1988). Components of prism adaptation in terminal and concurrent exposure – Organization of the eye-hand coordination loop. Perception & Psychophysics, 44, 59–68.

    Article  Google Scholar 

  • Redding, G. M., & Wallace, B. (1993). Adaptive coordination and alignment of eye and hand. Journal of Motor Behavior, 25, 75–88.

    Article  PubMed  Google Scholar 

  • Redding, G. M., Rossetti, Y., & Wallace, B. (2005). Applications of prism adaptation: a tutorial in theory and method. Neuroscience & Biobehavioral Reviews, 29(3), 431–444.

    Article  Google Scholar 

  • Rock, I., & Victor, J. (1964). Vision and touch: An experimentally created conflict between the two senses. Science, 143, 594–596.

    Article  PubMed  Google Scholar 

  • Rockland, K. S., & Ojima, H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey. International Journal of Psychophysiology, 50, 19–26.

    Article  PubMed  Google Scholar 

  • Rosas, P., Wichmann, F. A., & Wagemans, J. (2007). Texture and object motion in slant discrimination: Failure of reliability-based weighting of cues may be evidence for strong fusion. Journal of Vision, 7, 1–21.

    Article  Google Scholar 

  • Rosenblum, L. D. (2010). See what I’m saying: The extraordinary powers of our five senses. New York: W. W. Norton & Company Inc.

    Google Scholar 

  • Rosenthal, O., Shimojo, S., & Shams, L. (2009). Sound-induced flash illusion is resistant to feedback training. Brain Topography, 21, 185–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossetti, Y., Koga, S., & Mano, T. (1993). Prismatic displacement of vision induces transient changes in the timing of eye-hand coordination. Perception & Psychophysics, 54, 355–364.

    Article  Google Scholar 

  • Rossetti, Y., Rode, G., Pisella, L., Farne, A., Li, L., Boisson, D., & Perenin, M. T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395, 166–169.

    Article  PubMed  Google Scholar 

  • Rousseaux, M., Bernati, T., Saj, A., & Kozlowski, O. (2006). Ineffectiveness of prism adaptation on spatial neglect signs. Stroke, 37, 542–543.

    Article  PubMed  Google Scholar 

  • Rowland, B., Quessy, S., Stanford, T. R., & Stein, B. E. (2007a). Multisensory integration shortens physiological response latencies. Journal of Neuroscience, 27, 5879–5884.

    Article  PubMed  Google Scholar 

  • Rowland, B., Stanford, T. R., & Stein, B. E. (2007b). A model of the neural mechanisms underlying multisensory integration in the superior colliculus. Perception, 36, 1431–1443.

    Article  PubMed  Google Scholar 

  • Santangelo, V., Fagioli, S., & Macaluso, E. (2010). The costs of monitoring simultaneously two sensory modalities decrease when dividing attention in space. NeuroImage, 49(3), 2717–2727.

    Article  PubMed  Google Scholar 

  • Santangelo, V., & Spence, C. (2007). Multisensory cues capture spatial attention regardless of perceptual load. Journal of Experimental Psychology. Human Perception and Performance, 33, 1311–1321.

    Article  PubMed  Google Scholar 

  • Sapir, E. (1929). A study in phonetic symbolism. Journal of Experimental Psychology, 12, 225–239.

    Article  Google Scholar 

  • Sarter, N. B. (2006). Multimodal information presentation: Design guidance and research challenges. International Journal of Industrial Ergonomics, 36, 439–445.

    Article  Google Scholar 

  • Scheef, L., Boecker, H., Daamen, M., Fehse, U., Landsberg, M. W., Granath, D. O., Mechling, H., & Effenberg, A. O. (2009). Multimodal motion processing in area V5/MT: Evidence from an artificial class of audio-visual events. Brain Research, 1252, 94–104.

    Article  PubMed  Google Scholar 

  • Schroeder, C. E., & Foxe, J. J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research, 14, 187–198.

    Article  PubMed  Google Scholar 

  • Sereno, M. I., & Huang, R. S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neuroscience, 9, 1337–1343.

    Article  PubMed  Google Scholar 

  • Sereno, M. I., & Huang, R. S. (2014). Multisensory maps in parietal cortex. Current Opinion in Neurobiology, 24, 39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serino, A., Barbiani, M., Rinaldesi, M. L., & Ladavas, E. (2009). Effectiveness of prism adaptation in neglect rehabilitation a controlled trial study. Stroke, 40, 1392–1398.

    Article  PubMed  Google Scholar 

  • Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: What you see is what you hear. Nature, 408, 788.

    Article  PubMed  Google Scholar 

  • Shore, D. I., Barnes, M. E., & Spence, C. (2006). The temporal evolution of the crossmodal congruency effect. Neuroscience Letters, 392, 96–100.

    Article  PubMed  Google Scholar 

  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning. Psychonomic Bulletin & Review, 20, 21–53.

    Article  Google Scholar 

  • Silver, M. A., & Kastner, S. (2009). Topographic maps in human frontal and parietal cortex. Trends in Cognitive Sciences, 13(11), 488–495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slutsky, D., & Recanzone, G. H. (2001). Temporal and spatial dependency of the ventriloquism effect. Neuroreport, 12, 7–10.

    Article  PubMed  Google Scholar 

  • Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception & Psychophysics, 73, 971–995.

    Article  Google Scholar 

  • Spence, C., & Driver, J. (1997). Audiovisual links in exogenous covert spatial orienting. Perception & Psychophysics, 59(1), 1–22.

    Article  Google Scholar 

  • Spence, C., Nicholls, M. E. R., Gillespie, N., & Driver, J. (1998). Cross-modal links in exogenous covert spatial orienting between touch, audition, and vision. Perception & Psychophysics, 60(4), 544–557.

    Article  Google Scholar 

  • Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and touch in covert endogenous spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 26(4), 1298–1319.

    PubMed  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). Merging of the senses. Cambridge: MIT Press.

    Google Scholar 

  • Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9(4), 255–266.

    Article  PubMed  Google Scholar 

  • Stein, B. E., Stanford, T. R., Wallace, M. T., Vaughan, J. W., & Jiang, W. (2004). Crossmodal spatial interactions in subcortical and cortical circuits. In C. Spence, & J. Driver (Hrsg.), Crossmodal Space and Crossmodal Attention (S. 25–50). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Stein, B. E., Burr, D., Constantinidis, C., Laurienti, P. J., Meredith, M. A., Perrault, T. J., Ramachandran, R., Röder, B., Rowland, B. A., Sathian, K., Schroeder, C. E., Shams, L., Stanford, T. R., Wallace, M. T., Yu, L., & Lewkowicz, D. J. (2010). Semantic confusion regarding the development of multisensory integration: a practical solution. European Journal of Neuroscience, 31, 1713–1720.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson, R. A., Geoghegan, M. L., & James, T. W. (2007). Superadditive BOLD activation in superior temporal sulcus with threshold non-speech objects. Experimental Brain Research, 179, 85–95.

    Article  PubMed  Google Scholar 

  • Stricanne, B., Andersen, R. A., & Mazzoni, P. (1996). Eyecentered, head-centered, and intermediate coding of remembered sound locations in area LIP. Journal of Neurophysiology, 76, 2071–2076.

    PubMed  Google Scholar 

  • Sutter, C., Sülzenbrück, S., Rieger, M., & Müsseler, J. (2013). Limitations of distal effect anticipation when using tools. New Ideas in Psychology, 31, 247–257.

    Article  Google Scholar 

  • Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17, 1098–1114.

    Article  PubMed  Google Scholar 

  • Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turton, A. J., O’Leary, K., Gabb, J., Woodward, R., & Gilchrist, I. D. (2010). A single blinded randomised controlled pilot trial of prism adaption for improving self-care in stroke patients with neglect. Neuropsychological Rehabilitation, 20, 180–196.

    Article  PubMed  Google Scholar 

  • Van Erp, J. B. F., & Veen, H. A. H. C. van (2004). Vibrotactile in-vehicle navigation system. Transportation Ressearch Part F: Traffic Psychology and Behavior, 7, 247–256.

    Article  Google Scholar 

  • Van der Burg, E., Olivers, C. N. L., Bronkhorst, A. W., & Theeuwes, J. (2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34, 1053–1065.

    PubMed  Google Scholar 

  • Vroomen, J., & Keetels, M. (2006). The spatial constraint in intersensory pairing: No role in temporal ventriloquism. Journal of Experimental Psychology: Human Perception & Performance, 32, 1063–1071.

    Google Scholar 

  • Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72, 871–884.

    Article  Google Scholar 

  • Wallace, M. T., Ramachandran, R., & Stein, B. E. (2004). A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences, 101, 2167–2172.

    Article  Google Scholar 

  • Ward, L. M., McDonald, J. J., & Lin, D. (2000). On asymmetries in cross-modal spatial attention orienting. Perception & Psychophysics, 62(6), 1258–1264.

    Article  Google Scholar 

  • Watkins, S., Shams, L., Tanaka, S., Haynes, J. D., & Rees, G. (2006). Sound alters activity in human V1 in association with illusory visual perception. NeuroImage, 31(3), 1247–1256.

    Article  PubMed  Google Scholar 

  • Welch, R. B. (1978). Perceptual modification: Adapting to altered sensory environments. New York: Academic Press.

    Google Scholar 

  • Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88(3), 638–667.

    Article  PubMed  Google Scholar 

  • Wickens, C. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177.

    Article  Google Scholar 

  • Wozny, D., Beierholm, U., & Shams, L. (2008). Human trimodal perception follows optimal statistical inference. Journal of Vision, 8(3), 1–11.

    Article  PubMed  Google Scholar 

  • Zhang, M., Weisser, V. D., Stilla, R., Prather, S. C., & Sathian, K. (2004). Multisensory cortical processing of object shape and its relation to mental imagery. Cognitive, Affective & Behavioral Neuroscience, 4(2), 251–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Drewing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drewing, K. (2017). Multisensorische Informationsverarbeitung. In: Müsseler, J., Rieger, M. (eds) Allgemeine Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53898-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53898-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53897-1

  • Online ISBN: 978-3-642-53898-8

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics