Skip to main content

Überblick über Messverfahren und Messgeräte

  • Chapter
  • First Online:
  • 8185 Accesses

Part of the book series: VDI-Buch ((CHEMTECH))

Zusammenfassung

Zur Messung der Fließeigenschaften mit Schergeräten gibt es durchdachte Prozeduren, die eine genaue Messung ermöglichen und Einflüsse z. B. durch Anisotropie oder Reibung an Begrenzungswänden weitgehend ausschließen. Manchmal besteht aber der Wunsch, ein besonders „einfaches“ Messverfahren anzuwenden, z.B. die Messung des Böschungswinkels Das Kapitel gibt einen Überblick über die wesentlichen Kriterien für ein fehlerfreies Messverfahren und beurteilt eine Reihe von Messverfahren anhand dieser Kriterien.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Enstad GG, Pitchumani B, Sharma AK (1995) A simplified procedure for flow property testing using the Jenike shear tester. Proc. „5th Intnl. Conf. on Bulk Materials Storage, Handling and Transportation“, Newcastle, Australien, S 371–179

    Google Scholar 

  2. Tsunakawa H, Aoki R (1982) Measurements of the failure properties of granular materials and cohesive powders. Powder Technol 33:249–256

    Article  Google Scholar 

  3. Ladipo DD, Puri VM (1997) Computer controlled shear cell measurement of flow properties of particulate materials. Powder Technol 92:135–146

    Article  Google Scholar 

  4. Schulze D (2000) Letter to the editor. Powder Technol 107:186–190

    Article  Google Scholar 

  5. Kirby JM (1984) Letter to the editor. Powder Technol 39:291–292

    Article  Google Scholar 

  6. Haaker G, Wiersma-van Schendel WJA (1993) A constant volume sheartester: development and experiences. Bulk Solids Handl 13:129–133

    Google Scholar 

  7. Haaker G, Schreuder R (1992) Development of a constant volume translational shear tester. Proc. „Int. Conf. on Bulk Materials Handling and Transportation“, Wollongong, Australien, S 287–291

    Google Scholar 

  8. The Institution of Chemical Engineers (Hrsg) (1989) Standard shear testing technique for particulate solids using the Jenike shear cell. Deutsche Übersetzung: Feise HJ (2004) Standardmethode zur Charakterisierung von Schüttgütern. DECHEMA e. V., Frankfurt a. M.

    Google Scholar 

  9. Umeya K, Hara R, Kikuta J (1975) On two-dimensional shear tests by model powders. J Chem Eng Japan 8:56–62

    Google Scholar 

  10. Schwedes J, Schulze D (1990) Measurement of flow properties of bulk solids. Powder Technol 61:59–68

    Article  Google Scholar 

  11. Harder J (1985) Ermittlung der Fließeigenschaften kohäsiver Schüttgüter mit einer Zweiaxialbox. Dissertation, TU Braunschweig

    Google Scholar 

  12. Gerritsen AH (1982) The mechanics of cohesive powders. Dissertation Rijksuniv. te Groningen, Niederlande

    Google Scholar 

  13. Schwedes J (1971) Scherverhalten leicht verdichteter, kohäsiver Schüttgüter. Dissertation Univ, Karlsruhe

    Google Scholar 

  14. Haaker G, Rademacher FJC (1983) Direkte Messung der Fließeigenschaften von Schüttgütern mit einem abgeänderten Triaxial-Gerät. Aufbereitungstechnik 11:647–655

    Google Scholar 

  15. Arthur JRF, Dunstan T, Enstad GG (1985) Determination of the flow function by means of a cubic plane strain tester. Int J Bulk Solids Storage Silos 1:7–10

    Google Scholar 

  16. Schulze D (1995) Zur Fließfähigkeit von Schüttgütern – Definition und Meßverfahren. Chem Ing Techn 67:60–68

    Google Scholar 

  17. Schulze D (1998) The measurement of the flowability of bulk solids. In: Brown CJ, Nielsen J (Hrsg) Silos – fundamentals of theory, behaviour and design. E & FN Spon, London, S 18–52

    Google Scholar 

  18. Nowak M, Schwedes J (1993) Measuring the fundamental material properties with true biaxial tester. Proc. Reliable Flow of Particulate Solids II, Oslo, 23.–25. August 1993, EFChE Publ. Ser. No. 96, S 285–305

    Google Scholar 

  19. Schwedes J (1979) Vergleichende Betrachtungen zum Einsatz von Schergeräten zur Messung von Schüttguteigenschaften. Preprints PARTEC, Nürnberg, S 278–299

    Google Scholar 

  20. Schwedes J (2003) Review on testers for measuring flow properties of bulk solids. Granular Matter 5:1–43

    Article  Google Scholar 

  21. Schulze D, Heinrici H, Zetzener H (2001) The ring shear tester as a valuable tool for silo design and powder characterization. Powder Handl Process 13:19–24

    Google Scholar 

  22. Schmidt R, Feise H (2004) Influence of tester geometry, speed and procedure on the results from a ring shear tester. Part Part Syst Charact 21:403–410

    Article  Google Scholar 

  23. Jiang W, Matsusake S, MAsuda H, Qian Y (2009) Development of measurement system for powder flowability based on vibrating capillary method. Powder Technol 188:242–247

    Article  Google Scholar 

  24. Degussa AG (1981) AEROSIL zur Verbesserung des Fließverhaltens pulverförmiger Substanzen. Schriftenreihe Pigmente Nr. 31

    Google Scholar 

  25. Council of Europe (COE) – European Directorate for the Quality of Medicines (2005) European Pharmacopoeia, Supplement 5.3.

    Google Scholar 

  26. DIN EN ISO 6186:1998 (1998) Kunststoffe – Bestimmung der Rieselfähigkeit

    Google Scholar 

  27. Schwedes J (1968) Fließverhalten von Schüttgütern in Bunkern. Chemie, Weinheim

    Google Scholar 

  28. Wouters IMF, Geldart D (1996) Characterising semi-cohesive powders using angle of repose. Part Part Syst Charact 13:254–259

    Article  Google Scholar 

  29. DIN ISO 4324 (1983) Tenside; Pulver und Granulate; Bestimmung des Schüttwinkels. Ausgabe 1983-12

    Google Scholar 

  30. Geldart D, Abdullah EC, Hassanpour A, Nwoke LC, Wouters I (2006) Characterization of powder flowability using measurement of angle of repose. China Particuol 4(3–4):104–107

    Article  Google Scholar 

  31. Geldart D, Abdullah EC, Verlinden A (2009) Characterization of dry powders. Powder Technol 190:70–74

    Article  Google Scholar 

  32. Kalman H, Goder D, Rivkin M, Ben-Dor G (1993) The effect of the particle-surface friction coefficient on the angle of repose. Bulk Solids Handl 13:123–128

    Google Scholar 

  33. Brown RL, Richards JC (1970) Principles of powder mechanics. Pergamon Press, Oxford

    Google Scholar 

  34. Liu XY, Specht E, Mellmann J (2005) Experimental study of the lower and upper angles of repose of granular materials in rotating drums. Powder Technol 154:125–131

    Article  Google Scholar 

  35. Hobbs JW, Rhodes D (2000) The use of dynamic avalanching and fractal analysis to characterise uranium oxide powders. Atalante 2000, Int. Conf., Scientific Research on the Back End of the Fuel Cycle for the 21th Century, Avignon, Frankreich, 24.–26. Okt. 2000

    Google Scholar 

  36. Lavoie F, Carilier L, Thibert R (2002) New methods characterizing avalanche behavior to determine powder flow. Pharm Res 19:887–893

    Article  Google Scholar 

  37. Kaye BH (1997) Characterizing the flowability of a powder using the concepts of fractal geometry and chaos theory. Part Part Syst Charact 14:53–66

    Google Scholar 

  38. Bhattachar SN, Hedden DB, Olsofsky AM, Qu X, Hsieh W-Y, Canter KG (2004) Evaluation of the vibratory feeder method for assessment of powder properties. Int J Pharm 269:385–392

    Article  Google Scholar 

  39. Thalberg K, Lindholm D, Axelsson A (2004) Comparison of different flowability tests for powders for inhalation. Powder Technol 146:206–213

    Article  Google Scholar 

  40. Castellanos A, Valverde JM, Quintanilla MAS (2004) The Sevilla powder tester: a tool for characterizing the physical properties of fine cohesive powders at very small consolidations. KONA 22:66–81

    Article  Google Scholar 

  41. Imse W (1972) Messung der Fließfähigkeit von Zement. Zem Kalk Gips 25:147–149

    Google Scholar 

  42. Mayerhauser D (1989) Pulver im Test. Die Chemische Produktion, Sonderausgabe Oktober 1989, S 24–31

    Google Scholar 

  43. Hosokawa MC: Powder Characteristics Tester. Operating Instructions.

    Google Scholar 

  44. ASTM Standard D6393: Standard test method for bulk solids characterization by Carr indices. ASTM International, www.astm.org

  45. Carr RL (1965) Evaluating flow properties of solids. Chem Eng 72:163–168

    Google Scholar 

  46. Carr RL (1965) Classifying flow properties of solids. Chem Eng 72:69–72

    Google Scholar 

  47. Freeman R (2004) Go with the flow. LabPlus Int. Feb./March 2004, S 8–10

    Google Scholar 

  48. Kammler RR (1985) Verfahren zur Schnellbestimmung der Fließeigenschaften von Schüttgütern. Aufbereitungstechnik 3:136–141

    Google Scholar 

  49. DIN 53194:1975-04 (1975) Prüfung von Pigmenten und anderen pulverförmigen oder granulierten Erzeugnissen; Bestimmung des Stampfvolumens und der Stampfdichte

    Google Scholar 

  50. DIN EN ISO 787-11:1995-10 (1995) Allgemeine Prüfverfahren für Pigmente und Füllstoffe – Teil 11: Bestimmung des Stampfvolumens und der Stampfdichte

    Google Scholar 

  51. Abdullah EC, Geldart D (1999) The use of bulk density measurements as flowability indicators. Powder Technol 102:151–165

    Article  Google Scholar 

  52. Svarovski L (1987) Powder testing guide. Elsevier Applied Science Publishers Ltd., London

    Google Scholar 

  53. Verlinden A (2000) Experimental assessment of shear testers for measuring flow properties of bulk solids. Ph. D. Thesis, Univ. of Bradford, England

    Google Scholar 

  54. Orband JLR, Geldart D (1997) Direct measurement of powder cohesion using a torsional device. Powder Technol 92:25–33

    Article  Google Scholar 

  55. Brabender OHG, Duisburg (1982) Flowabilitytest. Spezifikationsblatt Nr. 2124

    Google Scholar 

  56. Knight PC, Johnson SH (1988) Measurement of powder cohesive strength with a penetration test. Powder Technol 54:279–283

    Article  Google Scholar 

  57. Wand C, Hassanpour A, Ghadiri M (2008) Characterisation of flowability of cohesive powders by testing small quantities of weak compacts. Particuology 6:282–285

    Article  Google Scholar 

  58. Maltby LP, Enstad GG (1993) Uni-axial tester for quality control and flow property characterization of powders. Bulk Solids Handl 13:135–139

    Google Scholar 

  59. Kozler J, Novosad J (1989) A method for testing the flowability of fertilizers. Bulk Solids Handl 9:43–48

    Google Scholar 

  60. Williams JC, Birks AH, Bhattacharya D (1970/71) The direct measurement of the failure function of a cohesive powder. Powder Technol 4:328–337

    Google Scholar 

  61. Beckhaus R, Felgner W, Runge J (1992) Auslegung von Silos für verklebende grobkörnige Schüttgüter. Chem Ing Tech 64:292–293

    Google Scholar 

  62. Calvert G, Curcic N, Readhead C, Ahmadian H, Owen C, Beckett D, Ghadiri M (2013) A new environmental bulk powder caking tester. Powder Technol 249:323–329

    Article  Google Scholar 

  63. Röck M, Schwedes J (2005) Investigations on the caking behaviour of bulk solids – macroscale experiments. Powder Technol 157:121–127

    Article  Google Scholar 

  64. Thakur SC, Ahmadian H, Sun J, Ooi JY (2014) An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12:2–12

    Article  Google Scholar 

  65. Keller DE (1988) Versuche zur Bestimmung der Schüttgutfestigkeit im einachsigen Druckversuch. Exp. Studienarbeit am Institut für Mechanische Verfahrenstechnik, TU Braunschweig (unveröffentlicht)

    Google Scholar 

  66. Bell TA, Catalano EJ, Zhong Z, Ooi JY, Rotter JM (2007) Evaluation of the Edinburgh powder tester. Proc. PARTEC 2007, Nürnberg, 27.-29.3.2007, Paper S 30–31

    Google Scholar 

  67. Parrella L, Barletta D, Boerefijn R, Poletto M (2008) Comparison between a uniaxial compaction tester and a shear tester for the characterization of powder flowability. KONA 26:178–189

    Article  Google Scholar 

  68. Peschl IASZ, Colijn H (1977) New rotational shear testing technique. J Powder Bulk Solids Techol 1:55–60

    Google Scholar 

  69. Maarup C, Hjuler K, Dam-Johansen K (2014) High temperature cement raw meal flowability. Powder Technol 253:686–690

    Article  Google Scholar 

  70. Sankyo Dengyo Co., Ltd., Tokio: Powder Bed Tester. Katalog Nr. 111018903

    Google Scholar 

  71. Hong GH, Watanabe K (1990) Powder bed tester. Powder Handl Process 2:137–143

    Google Scholar 

  72. Ashton MD, Cheng DHC, Farley R, Valentin FHH (1965) Some investigations into the strength and flow properties of powders. Rheol Acta 4:206–218

    Article  Google Scholar 

  73. Ashton MD, Farley R, Valentin FHH (1964) An improved apparatus for measuring the tensile strength of powders. J Sci Instrum 41:763–765

    Article  Google Scholar 

  74. Oshima T, Hirota M (1985) Experimental examination on the shear process of powder bed. KONA 3:63–68

    Article  Google Scholar 

  75. Hirota M, Oshima T (1987) Shear properties of uniaxially preconsolidated powder bed – non-uniformity of the shear stress acting on the shear plane. Powder Technol 53:49–54

    Article  Google Scholar 

  76. Schubert H, Wibowo IW (1970) Zur experimentellen Bestimmung der Zugfestigkeit von gering verdichteten Schüttgütern. Chem Ing Techn 42:541–545

    Google Scholar 

  77. Wittmaier A (2003) Fließverhalten hochdisperser Pulver bei sehr kleinen Spannungen. Dissertation TU Braunschweig

    Google Scholar 

  78. Schweiger A, Zimmermann I (1999) A new approach for the measurement of the tensile strength of powders. Powder Technol 101:7–15

    Article  Google Scholar 

  79. Schmidt PC, Walter R (1994) Investigation of the cohesion behaviour of powders and their adhesion to a carrier by an electronic tensiometer. Pharmazie 49:183–187

    Google Scholar 

  80. Valverde JM, Ramos A, Castellanos A, Watson PK (1998) The tensile strength of cohesive powders and its relationship to consolidation, free volume and cohesivity. Powder Technol 97:237–245

    Article  Google Scholar 

  81. Watson PK, Valverde A, Castellanos A (2001) The tensile strength and free volume of cohesive powders compressed by gas flow. Powder Technol 115:45–50

    Article  Google Scholar 

  82. Quintanilla MAS, Castellanos A, Valverde JM (2001) Correlation between bulk stresses and interparticle contact forces in fine powders. Phys Rev Lett E 64:031301

    Article  Google Scholar 

  83. Johanson JR (1992) The Johanson Indicizer™ system vs. the Jenike shear tester. Bulk Solids Handl 12:237–240

    Google Scholar 

  84. Johanson JR (1993) Characterizing dry particulate solids for systems design. Proc. Reliable flow of particulate solids II, Oslo, 23.–25. August 1993, EFChE Publ. Ser. No. 96, S 11–32

    Google Scholar 

  85. Bell TA, Ennis BJ, Grygo RJ, Scholten WJF, Schenkel MM (1990) Practical evaluation of the Johanson Hang-up Indicizer. Bulk Solids Handl 14:117–125

    Google Scholar 

  86. Bell TA, Grygo RJ, Duffy SM, Puri VM (1995) Simplified methods of measuring powder cohesive strength. Preprints PARTEC „3rd Europ. Symp. Storage and Flow of Particulate Solids“, Nürnberg, S 79–88

    Google Scholar 

  87. Van der Kraan M (1996) Techniques for the measurement of the flow properties of cohesive powders. Dissertation Univ. Delft

    Google Scholar 

  88. McGee E, McGlinchey G (2006) Using data from vertical shear cell tests to define the flowability of bulk solids. Proc. „5th Intl. Conf. on Conveying and Handling of Particulate Solids (CHoPS )“, Sorrento, Italien, 27.-31. August 2006, Session C2

    Google Scholar 

  89. Schwedes J, Schulze D (1992) Letter to the Editor: The Johanson Indicizer system vs. the Jenike shear tester. Bulk Solids Handl 12:454–455

    Google Scholar 

  90. Marjanovic P, Geldart D, Orband JLR, Mooney T (1995) A comparative analysis of two hopper design methods. Preprints PARTEC „3rd Europ. Symp. Storage and Flow of Particulate Solids“, Nürnberg, S 69–78

    Google Scholar 

  91. Ploof DA, Carson JW (1994) Quality control tester to measure relative flowability of powders. Bulk Solids Handl 14:127–132

    Google Scholar 

  92. Schulze D (2004) Ein neues Prinzip zur Messung der Fließeigenschaften von Pulvern und Schüttgütern. Schüttgut 10:369–377

    Google Scholar 

  93. Schulze D (2003) Towards more reliability in powder testing. Proc. „4th Intl. Conf. on Conveying and Handling of Particulate Solids (CHoPS)“, Budapest, Vol 1, S 5.31–5.36

    Google Scholar 

  94. Jenike AW (1964/1980) Storage and flow of solids. Bull. No. 123, 20th Printing, revised 1980. Engng. Exp. Station, Univ. of Utah, Salt Lake City.

    Google Scholar 

  95. ASTM Standard D6128: Standard test method for shear testing of bulk solids using the Jenike shear cell. ASTM International, www.astm.org

  96. Schulze D (1994) Entwicklung und Anwendung eines neuartigen Ringschergerätes. Aufbereitungstechnik 35:524–535

    Google Scholar 

  97. Münz G (1976) Entwicklung eines Ringschergerätes zur Messung der Fließeigenschaften von Schüttgütern und Bestimmung des Einflusses der Teilchengrößenverteilung auf die Fließeigenschaften kohäsiver Kalksteinpulver. Dissertation Univ, Karlsruhe

    Google Scholar 

  98. Peschl IASZ (1989) Equipment for the measurement of mechanical properties of bulk materials. Powder Handl Process 1:73–81

    Google Scholar 

  99. ASTM Standard D6682: Standard test method for measuring the shear stresses of powders using the Peschl rotational split level shear tester. ASTM International, www.astm.org

  100. ASTM Standard D6773: Standard shear test method for bulk solids using the Schulze ring shear tester. ASTM International, www.astm.org

  101. Schulze D (2010) Ringversuch mit Ringschergeräten. Schüttgut 16:146–153

    Google Scholar 

  102. Schulze D (2011) Round Robin test on ring shear testers. Adv Powder Techn 22:197–202

    Article  MathSciNet  Google Scholar 

  103. Carson JW, Wilms H (2006) Development of an international standard for shear testing. Powder Technol 167:1–9

    Article  Google Scholar 

  104. Akers RJ (1992) EUR14022 – The certification of a limestone powder for Jenike shear testing. Publ. by the Commission of the European communities (www.irmm.jrc.be)

  105. Institute für Reference Materials and Measurements (IRMM) (2006) Certified Reference Materials. Anschrift: Retieseweg 111, B-2440 Geel, Belgien, Tel.: + 32 (0)14 571 211, www.irmm.jrc.be

  106. Markefka P, Steckel H (2005) Powder flowability analysis as predictor for delivered mass uniformity from dry powder inhalers. Pharm Ind 67:823–829

    Google Scholar 

  107. Halford WG, Arnold PC (2007) Some observations on teh design data provided by three well known devices for measuring flow properties of bulk solids. 9th International Conference on Bulk Materials Storage, Handling and Transportation (ICBMH 2007), Barton ACT, Australia (ro.uow.edu.au).

    Google Scholar 

  108. Emery E, Oliver J, Pugsley T, Sharma J, Zhou J (2009) Flowability of moist pharmaceutical powders. Powder Technol 189:409–415

    Article  Google Scholar 

  109. Schulze D (1995) Appropriate devices for the measurement of flow properties for silo design and quality control. Preprints PARTEC „3rd Europ. Symp. Storage and Flow of Particulate Solids“, Nürnberg, S 45–56

    Google Scholar 

  110. Wilms H, Schwedes J (1985) Interpretation of ring shear tests. Bulk Solids Handl 5:1017–1020

    Google Scholar 

  111. Bagster DF (1981) Tests on a very large shear cell. Bulk Solids Handl 1:145–149

    Google Scholar 

  112. Léonard G, Abatzoglou N (2010) Stress distribution in lubricated vs. unlubricated pharmaceutical powder columns and their container walls during translational and torsional shearing. Powder Technol 203:534–547

    Article  Google Scholar 

  113. van den Bergh WJH, Scarlett B (1987) Influence of particle breakage on the wall friction of brittle particulate solids. Powder Technol 49:277–288

    Article  Google Scholar 

  114. van den Bergh WJH, Scarlett B (1991) Influence of particle breakage on the wall friction coefficient of brittle particulate solids, part I: influence of wall inclination, normal load and displacement. Powder Technol 67:237–247

    Article  Google Scholar 

  115. Margreiter H (2003) Scherzellenuntersuchungen für die Präformulierung fester Arzneiformen. Dissertation Univ. Innsbruck

    Google Scholar 

  116. Maltby LP (1993) Investigation of the behaviour of powders under and after consolidation. Dissertation Telemark Institute of Technology, Norwegen

    Google Scholar 

  117. Schulze D (2008) Ringversuch (Round Robin Project): Messen der Fließeigenschaften von Kalksteinmehl CRM-116 mit den Ringschergeräten RST-XS und RST-01.pc. www.dietmar-schulze.de/roundrobin.html

  118. Schubert H (Hrsg) (2003) Handbuch der Mechanischen Verfahrenstechnik, Bd. 1 und 2. WILEY-VCH Verlag Weinheim

    Google Scholar 

  119. Heim LO, Ecke S, Preuss M, Butt HJ (2002) Adhesion forces between individual gold and polystyrene particles. J Adhes Sci Technol 16:829–843

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schulze .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze, D. (2014). Überblick über Messverfahren und Messgeräte. In: Pulver und Schüttgüter. VDI-Buch(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53885-8_6

Download citation

Publish with us

Policies and ethics