Advertisement

A New Diffusion Process to Epidemic Data

  • Desire Romero
  • Nuria Rico
  • Maribel G-Arenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

In this paper, a new non-homogeneous diffusion process is introduced, which is a combination between a Gompertz-type and a lognormal diffusion process, so that the mean function is a mixture between Gompertz and exponential curves. The main innovation of the process is that the trend, after reaches a bound, changes to be increasing or decreasing to zero, a situation that is not provided by the previous models. After building the model, a comprehensive study of its main characteristics is presented. Our goal is to use the process with preditive purpose, so how to get the estimations of the parameters of the process and theirs characteristics functions is presented in this paper. Finally, the potential of the new process to model epidemic data are illustrated by means of an application to simulated data.

Keywords

Growth curve Gompertz curve exponential curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutiérrez, R., Román, P., Romero, D., Torres, F.: Applications of the univariate lognormal diffusion process with exogenous fact. Cybern. Syst. 34(8), 709–724 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Gutiérrez, R., Román, P., Romero, D., Serrano, J.J., Torres, F.: A new Gompertz-type diffusion process with applications. Math. Biosci. 208, 147–165 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Capocelli, R.M., Ricciardi, L.M.: Growth with regulation in random enviroment. Kybernetik 15, 147–157 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gutiérrez, R., Rico, N., Román, P., Romero, D., Torres, F.: Obtención de procesos de difusión no homogéneos a partir de esquemas discretos. In: Actas del Decimoséptimo Congreso Nacional de la S.E.I.O. (Lérida), pp. 4274–4279 (2003)Google Scholar
  5. 5.
    Gutiérrez, R., Rico, N., Román, P., Romero, D., Torres, F.: Obtención de un proceso de difusión no homogéneo a partir de modelos de crecimiento. In: Actas del Decimoséptimo Congreso Nacional de la S.E.I.O. (Lérida), pp. 4280–4287 (2003)Google Scholar
  6. 6.
    Ricciardi, L.M.: On the transformation of diffusion processes into the Wienner Process. J. Math. Anal. Appl. 54, 185–199 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kloeden, P.E., Platen, E., Schurz, H.: Numerical solution of SDE through computer experiments. Springer (1994)Google Scholar
  8. 8.
    Rao, N.J., Borwankar, J.D., Ramkrishna, D.: Numerical solution of Ito integral equations. SIAM Journal on Control and Optimization 12, 124–139 (1974)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Desire Romero
    • 1
  • Nuria Rico
    • 1
  • Maribel G-Arenas
    • 1
  1. 1.Universidad de GranadaSpain

Personalised recommendations