Advertisement

Yard Storage Assignment Optimisation with Neutral Walks

  • Monika Kofler
  • Andreas Beham
  • Erik Pitzer
  • Stefan Wagner
  • Michael Affenzeller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

In this paper we investigate how to stack products on a storage yard for efficient retrieval. The objective is to minimise both the transport distance and the number of stack shuffles. Previous research on yard storage assignment indicated that the fitness landscape of the problem features a high degree of neutrality, meaning that there are many neighbouring solutions with identical objective value. We exploit this property and couple local search, tabu search and evolution strategy with neutral walks and extrema selection. A small benchmark instance can be solved to optimality with all three modified algorithm variants while the standard algorithms got stuck in local optima.

Keywords

local search fitness landscapes neutral walk storage location assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)Google Scholar
  2. 2.
    Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Kofler, M., Beham, A., Vonolfen, S., Wagner, S., Affenzeller, M.: Modelling and optimizing storage assignment in a steel slab yard. In: Szakal, A. (ed.) 2012 4th IEEE International Symposium on Logistics and Industrial Informatics (LINDI), pp. 101–106. IEEE (September 2012)Google Scholar
  6. 6.
    Forst, C.V.: Molecular evolution: A theory approaches experiments. Journal of Biotechnology 64(1), 101–118 (1998)CrossRefGoogle Scholar
  7. 7.
    Barnett, L.: Netcrawling-optimal evolutionary search with neutral networks. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 30–37. IEEE (2001)Google Scholar
  8. 8.
    Verel, S., Collard, P., Clergue, M.: Scuba search: when selection meets innovation. In: Congress on Evolutionary Computation (CEC 2004), vol. 1, pp. 924–931. IEEE (2004)Google Scholar
  9. 9.
    Owen, A., Harvey, I.: Adapting particle swarm optimisation for fitness landscapes with neutrality. In: Swarm Intelligence Symposium, SIS 2007, pp. 258–265. IEEE (April 2007)Google Scholar
  10. 10.
    Stewart, T.: Extrema selection: Accelerated evolution on neutral networks. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 25–29. IEEE (2001)Google Scholar
  11. 11.
    Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From fitness landscape analysis to efficient local search algorithms. Technical Report (February 2012), http://hal.inria.fr/docs/00/66/54/21/PDF/RR-7871.pdf
  12. 12.
    Wagner, S.: Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. PhD thesis, Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Monika Kofler
    • 1
  • Andreas Beham
    • 1
  • Erik Pitzer
    • 1
  • Stefan Wagner
    • 1
  • Michael Affenzeller
    • 1
  1. 1.Heuristic and Evolutionary Algorithms LaboratoryUniversity of Applied Sciences Upper AustriaAustria

Personalised recommendations