Advertisement

Optimization as a Service: On the Use of Cloud Computing for Metaheuristic Optimization

  • Sebastian Pimminger
  • Stefan Wagner
  • Werner Kurschl
  • Johann Heinzelreiter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

Cloud computing has emerged as a new technology that provides on-demand access to a large amount of computing resources. This makes it an ideal environment for executing metaheuristic optimization experiments. In this paper, we investigate the use of cloud computing for metaheuristic optimization. This is done by analyzing job characteristics from our production system and conducting a performance comparison between different execution environments. Additionally, a cost analysis is done to incorporate expenses of using virtual resources.

Keywords

Cloud Computing Cloud Provider Cloud Environment Cloud Resource Execution Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Commun. ACM 53, 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for reusable design of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)CrossRefGoogle Scholar
  3. 3.
    Cahon, S., Melab, N., Talbi, E.G.: An enabling framework for parallel optimization on the computational grid. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2005), pp. 702–709. IEEE Computer Society (2005)Google Scholar
  4. 4.
    Curnow, H.J., Wichmann, B.A., Si, T.: A Synthetic Benchmark. The Computer Journal 19, 43–49 (1976)CrossRefGoogle Scholar
  5. 5.
    Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The Cost of Doing Science on the Cloud: The Montage Example. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, vol. 50, pp. 1–12. IEEE Press (2008)Google Scholar
  6. 6.
    Derby, O., Veeramachaneni, K., O’Reilly, U.-M.: Cloud Driven Design of a Distributed Genetic Programming Platform. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 509–518. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: 2008 Grid Computing Environments Workshop, pp. 1–10. IEEE (2008)Google Scholar
  8. 8.
    Kim, J., Kim, M., Stehr, M.O., Oh, H., Ha, S.: A parallel and distributed meta-heuristic framework based on partially ordered knowledge sharing. J. Parallel Distrib. Comput. 72(4), 564–578 (2012)CrossRefGoogle Scholar
  9. 9.
    Neumüller, C., Scheibenpflug, A., Wagner, S., Beham, A., Affenzeller, M.: Large Scale Parameter Meta-Optimization of Metaheuristic Optimization Algorithms with HeuristicLab Hive. In: Actas del VIII Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB). Albacete, Spain (2012)Google Scholar
  10. 10.
    Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science grids: a viable solution? In: Proceedings of the 2008 International Workshop on Data-Aware Distributed Computing, pp. 55–64. ACM (2008)Google Scholar
  11. 11.
    Parejo, J.A., Ruiz-Cortés, A., Lozano, S., Fernández, P.: Metaheuristic optimization frameworks: A survey and benchmarking. Soft Computing 16(3), 527–561 (2011)CrossRefGoogle Scholar
  12. 12.
    Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of scientific applications. In: Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks, pp. 4–16. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Wagner, S.: Heuristic Optimization Software Systems: Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. Ph.D. thesis, Johannes Kepler Universität Linz (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Pimminger
    • 1
  • Stefan Wagner
    • 1
  • Werner Kurschl
    • 1
  • Johann Heinzelreiter
    • 1
  1. 1.School of Informatics, Communications and MediaUniversity of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations