Measurement of Anisotropy in Fitness Landscapes

  • Erik Pitzer
  • Michael Affenzeller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


In this work we elaborate on the measurement of anisotropy in fitness landscapes by defining an extension over arbitrary base measures. This rather pragmatic method’s soundness is justified by statistical argument and tested on several existing and new fitness landscapes. Moreover, new variants of the popular NK landscapes are introduced that exhibit varying degrees of anisotropy.


fitness landscapes anisotropy stationarity NK landscapes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altenberg, L.: Evolving better representations through selective genome growth. In: CEC 1994, vol. 1, pp. 182–187 (1994)Google Scholar
  2. 2.
    Altenberg, L.: NK Fitness Landscapes. In: The Handbook of Evolutionary Computation, vol. 1–2, pp. B2.7.2:1–B2.7.2:11. Oxford University Press (1997)Google Scholar
  3. 3.
    Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis, University of New Mexico, Albuquerque, New Mexico (1995)Google Scholar
  4. 4.
    Naus, I.I.: An extension of the birthday problem. Am. Stat. 22, 27–29 (1968)Google Scholar
  5. 5.
    Pitzer, E.: Applied Fitness Landscape Analysis. Ph.D. thesis, Johannes Kepler University Linz, Austria (2013)Google Scholar
  6. 6.
    Pitzer, E., Affenzeller, M.: A Comprehensive Survey on Fitness Landscape Analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Pitzer, E., Beham, A., Affenzeller, M.: Automatic algorithm selection for the quadratic assignment problem using fitness landscape analysis. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 109–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Stadler, P.F., Grüner, W.: Anisotropy in fitness landscapes. J. Theor. Biol. 165(3), 373–388 (1993)CrossRefGoogle Scholar
  9. 9.
    Törn, A., Žilinskas, A. (eds.): Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  10. 10.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)CrossRefGoogle Scholar
  11. 11.
    Weinberger, E.D.: Local properties of kauffman’s n-k model, a tuneably rugged energy landscape. Physical Review A 44(10), 6399–6413 (1991)CrossRefGoogle Scholar
  12. 12.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63(5), 325–336 (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Int. Congr. Genet. 6, vol. 1, pp. 356–366 (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erik Pitzer
    • 1
  • Michael Affenzeller
    • 1
  1. 1.University of Applied Sciences Upper AustriaHagenbergAustria

Personalised recommendations