Advertisement

An Improved Heuristic for the Probabilistic Traveling Salesman Problem with Deadlines Based on GPGPU

  • Dennis Weyland
  • Roberto Montemanni
  • Luca Maria Gambardella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)

Abstract

Stochastic combinatorial optimization problems have received increasing attention in recent years. These problems can be used to obtain more realistic models for real world applications. The drawback is that stochastic combinatorial optimization problems are usually much harder to solve than their non-stochastic counterparts and therefore efficient heuristics for these problems are of great importance. In this paper we focus on the Probabilistic Traveling Salesman Problem with Deadlines, a well-known stochastic vehicle routing problem. This problem can be efficiently solved using a heuristic based on general-purpose computing on graphics processing units. We show how such a heuristic can be further improved to allow a more efficient utilization of the graphics processing unit. We extensively discuss our results and point out how our techniques can be generalized for solving other stochastic combinatorial optimization problems.

Keywords

Graphic Processing Unit Travel Salesman Problem Vehicle Route Problem Stochastic Demand Total Computational Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, C., Rinnooy Kan, A.H.G.: The stochastic vehicle routing problem revisited. European Journal of Operational Research 56(3), 407–412 (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Operations Research 40(3), 574–585 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertsimas, D.J., Howell, L.H.: Further results on the probabilistic traveling salesman problem. European Journal of Operational Research 65(1), 68–95 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bertsimas, D.J., Jaillet, P., Odoni, A.R.: A priori optimization. Operations Research 38(6), 1019–1033 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing 8(2), 239–287 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Campbell, A.M.: Aggregation for the probabilistic traveling salesman problem. Computers and Operations Research 33(9), 2703–2724 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Campbell, A.M., Thomas, B.W.: Challenges and advances in a priori routing. In: The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 123–142 (2008)Google Scholar
  8. 8.
    Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with deadlines. Transportation Science 42(1), 1–21 (2008)CrossRefGoogle Scholar
  9. 9.
    Campbell, A.M., Thomas, B.W.: Runtime reduction techniques for the probabilistic traveling salesman problem with deadlines. Computers and Operations Research 36(4), 1231–1248 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carraway, R.L., Morin, T.L., Moskowitz, H.: Generalized dynamic programming for stochastic combinatorial optimization. Operations Research 37(5), 819–829 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dror, M., Laporte, G., Louveaux, F.V.: Vehicle routing with stochastic demands and restricted failures. Mathematical Methods of Operations Research 37(3), 273–283 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem with stochastic demands and customers. Transportation Science 29(2), 143–155 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing problem with stochastic demands and customers. Operations Research 44(3), 469–477 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 691–700. Society for Industrial and Applied Mathematics (2004)Google Scholar
  15. 15.
    Jaillet, P.: Probabilistic traveling salesman problems. PhD thesis, M. I. T., Dept. of Civil Engineering (1985)Google Scholar
  16. 16.
    Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic integer programming: General models and algorithms. Annals of Operations Research 85, 39–57 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling salesman problem. Operations Research 42(3), 543–549 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Murat, C., Paschos, V.T.: A priori optimization for the probabilistic maximum independent set problem. Theoretical Computer Science 270(1), 561–590 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schultz, R., Stougie, L., Vlerk, M.H.: Two-stage stochastic integer programming: A survey. Statistica Neerlandica 50(3), 404–416 (2008)CrossRefGoogle Scholar
  20. 20.
    Uryasev, S., Pardalos, P.M.: Stochastic optimization: Algorithms and applications. Springer (2001)Google Scholar
  21. 21.
    Weyland, D., Bianchi, L., Gambardella, L.M.: New heuristics for the probabilistic traveling salesman problem. In: Proceedings of the VIII Metaheuristic International Conference (MIC 2009) (2009)Google Scholar
  22. 22.
    Weyland, D., Montemanni, R., Gambardella, L.M.: Using statistical tests for improving state-of-the-art heuristics for the probabilistic traveling salesman problem with deadlines. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part I. LNCS, vol. 6927, pp. 448–455. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Weyland, D., Montemanni, R., Gambardella, L.M.: A metaheuristic framework for stochastic combinatorial optimization problems based on GPGPU with a case study on the probabilistic traveling salesman problem with deadlines. Journal of Parallel and Distributed Computing (2012)Google Scholar
  24. 24.
    Weyland, D., Montemanni, R., Gambardella, L.M.: Hardness results for the probabilistic traveling salesman problem with deadlines. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 392–403. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Weyland, D., Montemanni, R., Gambardella, L.M.: Heuristics for the probabilistic traveling salesman problem with deadlines based on quasi-parallel Monte Carlo sampling. Computers and Operations Research (2012) (to appear)Google Scholar
  26. 26.
    Weyland, D., Montemanni, R., Gambardella, L.M.: On the computational complexity of the probabilistic traveling salesman problem with deadlines (2012) (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dennis Weyland
    • 1
  • Roberto Montemanni
    • 1
  • Luca Maria Gambardella
    • 1
  1. 1.IDSIA - Dalle Molle Institute for Artificial Intelligence / USI / SUPSIMannoSwitzerland

Personalised recommendations