Optimization of Container Terminal Problems: An Integrated Solution Approach

  • Christopher Expósito-Izquierdo
  • Eduardo Lalla-Ruiz
  • Belén Melián Batista
  • J. Marcos Moreno-Vega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8111)


Over the last decades, a great effort has been done in order to achieve a suitable management of international sea freight trade. The maritime container terminals are intermediate points aimed at exchanging containers within multimodal transport networks. The large number of decision problems brought together in these facilities and the way they are related to each other constitute a challenge for their managers. The goal of this work is to overview the most outstanding logistic processes in maritime container terminals and provide some general guidelines for designing integration approaches.


Maritime Container Terminal Seaside Storage Yard Landside Integration Approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research 202(3), 615–627 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Caserta, M., Schwarze, S., Voβ, S.: Container rehandling at maritime container terminals. In: Böse, J.W. (ed.) Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series, vol. 49, pp. 247–269. Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Coto-Millán, P., Pesquera-González, M.Á., Castanedo, J. (eds.): Essays on port economics. Contributions to economics. Physica-Verlag, Berlin (2010)Google Scholar
  4. 4.
    Expósito-Izquierdo, C., González-Velarde, J.L., Melián-Batista, B., Marcos Moreno-Vega, J.: Estimation of distribution algorithm for the quay crane scheduling problem. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds.) NICSO 2011. SCI, vol. 387, pp. 183–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Expósito-Izquierdo, C., Melián-Batista, B., Marcos Moreno-Vega, J.: Pre-marshalling problem: Heuristic solution method and instances generator. Expert Systems with Applications 39(9), 8337–8349 (2012)CrossRefGoogle Scholar
  6. 6.
    Forster, F., Bortfeldt, A.: A tree search procedure for the container relocation problem. Computers & Operations Research 39(2), 299–309 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Giallombardo, G., Moccia, L., Salani, M., Vacca, I.: Modeling and solving the tactical berth allocation problem. Transportation Research Part B: Methodological 44(2), 232–245 (2010)CrossRefGoogle Scholar
  8. 8.
    Kemme, N.: Operational rmgc-planning problems. In: Design and Operation of Automated Container Storage Systems. Contributions to Management Science, pp. 117–202. Physica-Verlag HD (2013)Google Scholar
  9. 9.
    Lalla-Ruiz, E., Melián-Batista, B., Marcos Moreno-Vega, J.: Artificial intelligence hybrid heuristic based on tabu search for the dynamic berth allocation problem. Engineering Applications of Artificial Intelligence 25(6), 1132–1141 (2012)CrossRefGoogle Scholar
  10. 10.
    Lee, D.-H., Jin, J.G.: Feeder vessel management at container transshipment terminals. Transportation Research Part E: Logistics and Transportation Review 49(1), 201–216 (2013)CrossRefGoogle Scholar
  11. 11.
    Meisel, F.: Integration concepts for seaside operations planning. In: Seaside Operations Planning in Container Terminals. Contributions to Management Science, pp. 47–54. Physica-Verlag HD (2009)Google Scholar
  12. 12.
    Ng, W.C., Mak, K.L.: Yard crane scheduling in port container terminals. Applied Mathematical Modelling 29(3), 263–276 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Nishimura, E., Imai, A., Papadimitriou, S.: Yard trailer routing at a maritime container terminal. Transportation Research Part E: Logistics and Transportation Review 41(1), 53–76 (2005)CrossRefGoogle Scholar
  14. 14.
    Park, T., Choe, R., Kim, Y.H., Ryu, K.R.: Dynamic adjustment of container stacking policy in an automated container terminal. International Journal of Production Economics 133(1), 385–392 (2011)CrossRefGoogle Scholar
  15. 15.
    Petering, M.E.H.: Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E: Logistics and Transportation Review 45(4), 591–610 (2009)CrossRefGoogle Scholar
  16. 16.
    Stahlbock, R., Voβ, S.: Vehicle routing problems and container terminal operations - an update of research. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces, vol. 43, pp. 551–589. Springer US (2008)Google Scholar
  17. 17.
    Sun, Z., Lee, L.H., Chew, E.P., Tan, K.C.: Microport: A general simulation platform for seaport container terminals. Advanced Engineering Informatics 26(1), 80–89 (2012)CrossRefGoogle Scholar
  18. 18.
    Vis, I.F.A., de Koster, R.: Transshipment of containers at a container terminal: An overview. European Journal of Operational Research 147(1), 1–16 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wiegmans, B.W., Rietveld, P., Nijkamp, P.: Container terminal services and quality. Serie Research Memoranda 0040, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics (2001)Google Scholar
  20. 20.
    Wu, Y., Luo, J., Zhang, D., Dong, M.: An integrated programming model for storage management and vehicle scheduling at container terminals. Research in Transportation Economics 42(1), 13–27 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher Expósito-Izquierdo
    • 1
  • Eduardo Lalla-Ruiz
    • 1
  • Belén Melián Batista
    • 1
  • J. Marcos Moreno-Vega
    • 1
  1. 1.Department of Statistics, Operations Research and ComputationUniversity of La LagunaLa LagunaSpain

Personalised recommendations